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Fusion of Clinical, Self-Reported, and
Multisensor Data for Predicting Falls
Joana Silva , Inês Sousa , and Jaime S. Cardoso , Senior Member, IEEE

Abstract—Falls are among the frequent causes of the
loss of mobility and independence in the elderly popula-
tion. Given the global population aging, new strategies for
predicting falls are required to reduce the number of their
occurrences. In this study, a multifactorial screening pro-
tocol was applied to 281 community-dwelling adults aged
over 65, and their 12-month prospective falls were anno-
tated. Clinical and self-reported data, along with data from
instrumented functional tests, involving inertial sensors
and a pressure platform, were fused using early, late, and
slow fusion approaches. For the early and late fusion, a
classification pipeline was designed employing stratified
sampling for the generation of the training and test sets.
Grid search with cross-validation was used to optimize a
set of feature selectors and classifiers. According to the
slow fusion approach, each data source was mixed in the
middle layers of a multilayer perceptron. The three studied
fusion approaches yielded similar results for the majority
of the metrics. However, if recall is considered to be more
important than specificity, then the result of the late fusion
approach providing a recall of 78.6% is better compared
with the results achieved by the other two approaches.

Index Terms—Fall risk assessment, inertial sensors,
machine learning, pressure platform.

I. INTRODUCTION

THE worldwide population aged over 65 is growing rapidly.
The consequences of this phenomenon are not only social

and health-related, but also economic. The process of aging
affects the ability of a person to maintain balance, mobility, and
muscle strength and to react properly to unexpected situations
such as slipping or stumbling. There are also cross-related fac-
tors resulting from health conditions, including loss of auditory
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and visual capabilities, side effects of medications, dizziness,
body pain, depression, and slow walking speed. Aside from
these intrinsic risk factors, falls among older people are also
associated with extrinsic factors, such as environment hazards,
footwear malfunctioning, improper use of assistive devices, and
recent hospitalizations [1].

Given a wide range of factors contributing to falls in the
context of an aging population, it becomes extremely important
to frame strategies that properly evaluate the risk factors of falls
in older people. Several scales, questionnaires, functional tests,
and protocols have been proposed in the past years to overcome
the lack of standardized clinical and medical procedures for
assessing the risk of falls [2]. However, in the majority of public
sectors, risk factors of falls among the elderly are only assessed
after the occurrence of a fall leading to hospitalization or the need
for other forms of medical care. When a fall risk assessment is
conducted after an occurrence of fall, the collected parameters
are altered as a consequence. On the other hand, the majority of
the proposed assessment scales and questionnaires are subjective
and self-reported and do not consider all major fall risk factors.
Proper methods for the objective assessment of individual gait,
strength and balance are confined to laboratory settings requiring
specialized personnel and equipment, thus leading to higher
costs. All these solutions rely on on-time assessments which
do not reflect the variation of risk factors over time.

Recently, solutions for the fall risk assessment based on low-
cost technologies have been proposed [2], including solutions
based on inertial sensors embedded into wearable devices or
smartphones. There are also solutions based on force and pres-
sure platforms aiming at assessing multiple factors of balance
and correlated fall risks.

This study describes an approach to predicting falls based on
a multifactorial screening protocol that combines personal, in-
ertial, and pressure platform data. Three alternative approaches
were explored for data fusion: an early approach, that combines
all data in a unified feature vector used for optimizing a grid
search pipeline; a late fusion approach that combines the pre-
dictions of three classification pipelines trained with each of
the individual data sources; and a slow fusion approach that
uses information from each data source individually in the first
layer of a multilayer perceptron (MLP) and then trains this MLP
end-to-end using all data sources.

The main contributions of this study are the following: i) the
use of multimodal data collected according to a multifactorial
screening protocol for predicting falls; ii) the richness of the
collected data allowing to infer not only functional capabilities
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of a person but also clinical and environmental information; and
iii) the exploration of different fusion approaches.

II. RELATED WORK

The related work described here comprises studies that used
any type of sensors to retrieve metrics during the execution of
fall risk functional tests. The studies focused only on clinical,
self-reported, or measurable variables (e.g., [3], [4]), are not
discussed in this section. We only noted that the sensitivity
achieved in these studies varied from 43% to 100% (median =
80%), whereas the specificity ranged from 38% to 96% (median
= 75%). Howcroft et al. [2] reviewed previous studies focusing
on the fall risk assessment with inertial sensors. The authors
concluded that future research should i) consider investigating
the relationship between the models’ predictive variables and
specific fall risk factors and ii) focus on groups with an increased
fall risk due to some diseases. As weak points of the previous
studies, the authors reported that 50% of them had not used
separate datasets for model training and validation, which could
have impacted the models’ applicability beyond the training
set population. Moreover, applying the most commonly used
cut-off values in clinical assessment tests could have biased the
decisions made since the thresholds typically used to split classes
had produced false positives and false negatives, introducing
inaccuracies when evaluating sensor-based models. Another as-
pect to be considered is that clinical assessment thresholds were
not used consistently across the research studies included in the
review. The prospective fall occurrence rate is considered to be
the most reliable criterion for dividing subjects into non-fallers
and fallers [2]; however this criterion was only used in 15% of
the studies. Regarding the retrospective fall assessment, the most
relevant limitations are the inaccurate recording of fall histories
most commonly assessed by self-reported questionnaires and
the fact that balance, strength, and gait parameters can change
due to past falls.

A. Retrospective Studies

Bigelow et al. [5] studied posturography for clinical fall risk
screening of older adults. They recruited 150 adults aged 65
and above from local senior centers and independent living
facilities. The subjects were categorized as recurrent fallers and
non-recurrent fallers based on their fall status in the previous
year. The participants performed four standing tasks on a force
platform. The authors extracted ”traditional and fractal measures
from the center of pressure data” [5]. Their logistic regression
model exhibited a sensitivity (recall) of 75% and a specificity
of 94%. The authors highlighted the importance of combining
multiple variables rather than using only a single measure to
compute the fall risk.

Qiu et al. [6] reported a study conducted with multiple wear-
able inertial sensors for multifactorial fall risk assessment on 196
community-dwelling older women. The sequence included the
Timed Up and Go (TUG), Five Times Sit to Stand (5TSTS), and
Limits of Stability tests. A model built using inertial sensor data
and support vector machine was able to classify between fallers
(N = 82) and non-fallers (N = 114) based on fall histories. The
model achieved an overall accuracy of 89.4% (92.7% sensitivity

and 84.9% specificity). The results of the study support the idea
that inertial sensors allow the identification of individuals with
a high risk of falls, who should be followed with fall prevention
strategies.

Greene et al. [7] performed a quantitative estimation of the fall
risk using multiple sensors during the standing balance exercise.
The authors acquired data from 120 community-dwelling older
adults aged over 60 by using a pressure-sensitive platform sensor
and attaching a body-worn inertial sensor to the lower back of the
participants. The estimation of the fall risk was compared with
the Berg Balance Scale (BBS). The results were analyzed by
gender using a support vector machine model, which returned
a mean classification accuracy of 73.07% for the participants
with a self-reported history of falling in the past 5 years. These
results compared favorably with those obtained using solely the
BBS (with a mean classification accuracy of 59.42%).

B. Prospective Studies

Liu et al. [8] reported an accelerometer-based fall prediction
model that was trained using wearable inertial sensor data ob-
tained in a routine assessment, including the TUG test, Alternate
Step Test (AST), and 5TSTS. The study sample included 68
subjects aged from 72 to 91 from a previous study and a second
group of 30 subjects aged from 68 to 92 who were newly
recruited. The authors have assessed the prospective falls that
occurred in the following 12 months based on fall diaries. The
best classification performance allowing to distinguish fallers
from non-fallers with a sensitivity of 68% and a specificity of
73% was achieved by a logistic regression model that was trained
using only AST data.

Schooten et al. performed several studies focusing on the
assessment of the ambulatory fall risk. The study participants
aged over 65 wore an inertial sensor for one week. The authors
extracted metrics related to the amount of physical activity
and gait characteristics and reported several approaches ranging
from logistic regression to deep learning methods to discriminate
between fallers and non-fallers. A logistic regression model
trained on accelerometry-derived parameters of gait obtained
from 139 participants allowed to substantially improve the area
under the curve (AUC) up to a value of 0.82, compared with
using questionnaires and functional test scores alone [9]. Deep
learning models built using a dataset of 296 older adults achieved
an accuracy similar to that of the logistic regression model. Aicha
et al. [10] highlighted the fact that deep learning models have
the advantage of not requiring the implementation of feature
extraction methods.On the other hand, deep learning models
lack interpretability, which limits their application in medical
contexts. The same authors [11] also demonstrated that the gait
quality in daily life is ”predictive for both time-to-first and
time-to-second falls in both univariate and multivariate models”
with adequate to good accuracy.

C. Challenges and Opportunities

One of the most commonly reported limitations of fall risk
assessments is the large feature dimensionality relative to the
sample size of datasets. With the exception of the work by
Schooten et al., the majority of existing studies are based on
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data collected from less than 150 participants. The collection
of larger datasets is time- and resource-consuming, whereas
small-size datasets can impact the quality of the analysis and
generalizations retrieved from that data. Moreover, the low
incidence of falls (less than 30% in the older population) leads to
unbalanced datasets which can negatively impact results. In this
study, we employed an oversampling technique to deal with the
unbalanced nature of the collected dataset, a procedure that is
rarely reported in the literature for fall prediction. Furthermore,
we divided the dataset into a training dataset and a hold-out
test set for model validation, something that has been lacking in
previous research [2].

In this case study, we applied a multifactorial fall risk screen-
ing protocol to 403 participants. Only a part of the population
aged over 65 was taken into consideration for analysis, resulting
in a total of 281 participants. Another challenge presented in pre-
vious studies relates to the fall risk parameters being evaluated
and data sources used for feature extraction. The majority of
the existing studies focusing on fall risk prediction are based
on a single source of data, either clinical and self-reported
or extracted from inertial sensors. In contrast, we combined
several data sources, including not only clinical and self-reported
data but also information about functional capabilities, such as
mobility, balance and strength, obtained from inertial sensors
and a pressure platform during the execution of a multifactorial
screening protocol. This protocol combined the most relevant
tests for assessing grip strength, balance, mobility and muscle
strength. The multifactorial nature of the collected data provided
an opportunity to study data fusion approaches, and compare
models based on a single source of data with models based on
data fusion. While there is a lack of consensus regarding the
output metric that should be used to divide population groups
into fallers and non-fallers, the 1-year follow-up occurrence of
falls has been pointed out as the most reasonable metric [2]. We
used monthly follow-up phone calls to record the occurrence
of falls over 1-year period and based our analysis on reported
fall occurrences instead of automatic detection of falls. while
there are tools for automatic detection of falls, such as personal
emergency response systems (PERS), these have never been
reported to be used during the follow-up period.

III. METHODOLOGY

A. Data Collection

1) Subjects: Four hundred and three Portuguese
community-dwelling adults aged over 50 (mean age of
69.69 ± 10.31; 70% women) were recruited from parish
councils, physical therapy clinics, senior’s universities, and
other community facilities. The inclusion criterion was the
ability to independently stand and walk with or without walking
aids. The excluding criterion was the presence of severe sensory
(deafness or blindness) or cognitive impairments [12]. Only
adults aged over 65 were considered for the analysis given
that many previous studies used this age as a threshold for
patient recruitment. The sample used in this study consisted
of 281 subjects. The research was approved by the Ethics
Committee at the Polytechnic Institute of Coimbra (N◦6/2017).
All participants gave their written informed consent before

the data collection in accordance with the principles of the
Declaration of Helsinki [12].

2) Protocol: A multifactorial screening protocol for assessin
the risk of falls in community-dwelling adults was defined
based on relevant literature. The protocol included demographic
and anthropometric data; lifestyle and health behavior data; six
functional tests (handgrip strength test, TUG test, 30 s STS,
Step test (Step), “modified” 4-Stage Balance test (4Stage), and
10-m walking speed test (10 Meter Walk) instrumented with
inertial sensors and a pressure platform); and questionnaires
about environmental home hazards, activity and participation
profile related to mobility, and self-efficacy to exercise [12].

3) Data Sources: Several types of data were collected:
� Clinical data, including demographic, anthropometric and

data such as place of residence, age, sex, medical condi-
tions, and medications taken, as well as functional tests
outcomes, such as test timing, number of repetitions, and
grip strength.

� Self-reported data from questionnaires, such as home
hazards, previous number of falls, and fear of falling;

� Three-dimensional (3D time series extracted from the 3D
accelerometer and 3D gyroscope used in the functional
tests, including the time to stand and average acceleration
along x, y, and z axes.

� Two-dimensional (2D) time series extracted from the pres-
sure platform used in the functional tests, including the
center of pressure oscillation in the mediolateral and an-
teroposterior directions.

Clinical and self-reported data were combined to form one
data source named the personal data.

4) Prospective Falls After 12 Months: The participants were
followed for 12 months via monthly phone calls. ”The rate of
falls was recorded from the day of inclusion until voluntary
dropout, loss of phone contact or the end of the follow-up
period” [12]. The participants who reported at least one fall
in the 12-month follow-up period were categorized as fallers,
whereas those who did not report any falls during this period
were categorized as non-fallers. The incidence of fallers in
the study sample was 26.3%, which is in accordance with the
literature reporting that approximately one-third of people over
65 will fall each year [2].

B. Feature Extraction

During the walking tests (i.e., TUG and 10 Meter Walk),
two wearable inertial sensors [14], were placed on the lower
back and ankle of the support leg. The sensors were sampled
at 50 Hz. For the static tests (i.e., STS Step, and 4Stage) the
PhysioSensing pressure platform [15] sampled at 50 Hz was
used in addition to the two inertial sensors. The handgrip strength
was assessed using a Jamar hydraulic hand dynamometer [12].
Each functional test was divided into phases, e.g., 4Stage was
divided into seven balance positions. Several features, as detailed
in Table I were extracted from the four sources of data, i.e.,
clinical, self-reported, inertial sensor, and pressure platform
data. Overall, 230 features were extracted.

1) Inertial Sensors: An analysis and segmentation of the
TUG test involving inertial sensors were previously reported
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TABLE I
FEATURES EXTRACTED FROM CLINICAL REPORTS, SELF-REPORTED,

INERTIAL, AND PRESSURE PLATFORM DATA

max: maximum, min: minimum, rms: root mean square, std dev: standard deviation, iqr:
interquartile range, avg: average, fft: fast fourier transform, freq: frequency, amp: amplitude.

by Silva and Sousa [16]. Later on, Silva et al. [13] presented
an analysis of the TUG, STS, and 4Stage tests performed with
inertial sensors and a pressure platform, reporting a feature
extraction process for both types of sensors. We adopted the
analysis procedures reported in these studies. Our analysis of the
10 Meter Walk test was based on a previous work by Aguiar et al.
[17]. The inertial features presented in Table I were extracted
from the magnitude of the accelerometer signal.

2) Pressure Platform: For the Step test, the number of steps
was segmented based on the information provided by the pres-
sure platform when a subject raised the leg. If a variation in
the number of active cells was detected compared with the
initial bipodal position, a step was identified. As the leg was
lowered toward the pressure platform, the number of active cells
increased, and the end of the segmentation phase was reached.
The pressure platform features extracted for the Step and STS
tests were the same as previously described for the STS test [13].

C. Classification Pipeline

1) Data Profiling: First, nominal data, such as therapist id,
patient id, local id, were removed from the feature vector, and
the remaining variables were converted to numerical values. The
clinical and self-reported data were converted to numerical val-
ues using categorical/dichotomous variables when appropriate.
Then, data profiling was performed, and the features with a
correlation coefficient above 0.90 were removed. A statistical
description of the database was achieved by depicting grouping
variables such as the last year falls, follow-up falls, need of
walking aid, and need of assistance to stand up in scatter and
box plots. We performed an independent samples t-test on each
grouping variable, with 95% confidence level. A segmentation
of the database for each type of the data source, i.e., personal data
(comprising the clinical and self-reported data), inertial sensor

data, and pressure platform data, was also considered for testing
different fusion approaches.

2) Feature Pre-Processing: Several feature pre-processing
methods were employed, mainly for dealing with missing values.
As 28 participants were unable to perform at least one of the
functional tests due to physical limitations, the data from these
tests had missing values. Moreover, missing values were present
when participants were unable to reach the last positions among
the seven balance positions of the 4Stage test. The last position
of the 4Stage test had 80% missing values. The missing values
for the remaining features accounted on average for 5.8 ±
11.8% of all values. Due to time constraints during the data
collection, the database also contained some missing answers for
participants who filled in the questionnaire. Since the inability to
accomplish a functional test could yield valuable information re-
lated to functional capabilities, the missing values in such cases
were replaced by zero. Removing the participants with missing
values would have resulted in a significant reduction of the
sample dimension, preventing from accurately representing the
target population. All features were normalized by removing
the mean and scaling to the unit variance.

3) Data Fusion Approaches: Three approaches to data fu-
sion could be considered using the collected dataset: 1) data-
level fusion, i.e., combining the data obtained from the iner-
tial sensors and pressure platform to extract features resulting
from the joint analysis of both signals; 2) feature-level fusion,
i.e., extracting features from the three data sources separately
and combining all features in the same feature vector; and 3)
decision-level fusion, i.e., training a model for each data source
and combining the predictions of all models. In our study, we
experimented with three different data fusion approaches. The
first approach, called early fusion, involves fusing data after
the feature extraction stage and before the classification stage
(i.e., feature-level fusion). The second approach, called late
fusion, involves fusing data after the classification stage (i.e.,
decision-level fusion. Finally, the third approach, called slow
fusion is based on combination of the first two approaches. In
particular, it gradually fuses multisource information in a neural
network, in such a way that higher layers of the network are
provided with progressively more information [18].

The late fusion approach uses the majority voting mechanism,
where the predicted class label for a specific instance is assigned
based on the class label predicted by the majority of individual
classifiers. The slow fusion approach combines the information
of each data source in the middle layers of a neural network
(Fig. 1). For the implementation of the slow fusion approach,
we employed the Keras library to train a multi-input sequential
model, receiving three data sources in a single network. For each
data source, we combined three feedforward fully connected
(dense) layers with the ReLu activation function, intercalated
with dropout layers, and with a sequential decrease in the number
of layers’ nodes. The last layers of each model were concatenated
in a stack of two dense layers with sigmoid activation. This
model was optimized using binary cross entropy loss and Adam
optimization.

4) Classification Pipeline: A randomly stratified train-test
split was performed 50 times to ensure the variability between
train and test splits, with 33% of the data being selected for
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Fig. 1. Early, late, and slow fusion approaches for combining personal,
inertial sensor, and pressure platform data, for fall prediction.

Fig. 2. Classification pipeline for optimizing the of feature selector,
classifiers, and scoring function, grid search with CV is applied to the
training set, whereas results are reported for the test set.

the test set. Each split yielded a training set of 188 samples
(138 non-fallers, 50 fallers) and a test set of 93 samples (69
non-fallers, 24 fallers). Using grid search with cross-validation
(CV) over the training set, a classification pipeline was defined
to optimize a range of parameters for the three stages: feature
selection, classification, and grid search scoring (Fig. 2).

For the feature selection, we optimized the number of com-
ponents for principal component analysis (PCA) and threshold
for the variance threshold method. For the classification stage,
we optimized the following hyperparameters of each of the
considered classifiers: the variable k and search algorithm of
the k-Nearest Neighbors (k-NN) classifier; the maximum depth,
number of estimators, and minimum samples to split for the
Decision Tree and Random Forest classifiers; and the solver
and maximum number of iterations for the Logistic Regression
(LogReg) classifier. For the grid search scoring, we considered
precision, recall, AUC, F1-score, and accuracy.

Since the incidence of fallers in the database was only 26.33%,
we applied an oversampling procedure, namely, the Synthetic
Minority Oversampling Technique (SMOTE) [19], to the train-
ing set employed in the grid search. In particular, the SMOTE
was used to oversample the minority class in the feature space.
In this way, the minority class was oversampled by creating
synthetic examples rather than oversampling with replacement.

5) Validation: Since the grid search was performed over 50
partitions of the dataset and for the three stages of the pipeline,
we obtained several combinations of parameters evaluated with
different partitions of the initial dataset. We decided to present
the mean and standard deviation across the 50 iterations for each

tested classifier combined with different feature selection meth-
ods, estimator’s hyperparameters, and grid search optimization
scores. We report the obtained accuracy, AUC, F1-score, preci-
sion, recall, and specificity. To compare the performance metrics
across the different fusion approaches, we used ANOVA multi-
ple comparison analysis testing. As a post-hoc test we applied
Tukey’s Honest Significant Difference Test (HSDT) with 95%
confidence level to all possible pairs among the three data fusion
methods.

IV. RESULTS

A. Descriptive Characteristics

1) Demographic and Anthropometric Information: A total of
281 older people aged over 65 were included in this study. Out
of them, 65% were female, 74% were community-dwelling, and
17% used a walking aid. Participants were 75.1 ± 6.9 years old,
160 ± 7.9 cm tall and weighed 72.1 ± 11.1 kg.

2) Retrospective and Prospective Falls: Out of the 281 par-
ticipants, 94 (33.5%) reported at least one fall in the previous
year and 74 subjects (26.3%) experienced at least one fall
during the 1-year follow-up. Among the 94 subjects that reported
previous falls, 35 fell during the follow-up period.

3) Self-Reported Questionnaires: Self-reported question-
naires revealed that 38.8% of the participants required an up-
per extremity assistance to stand up from a chair. Among all
participants, 35.6% reported living alone, 69% reported taking
more than four medicines daily, and 50.5% reported having a
sedentary lifestyle. When asked if they were afraid of falling,
52.7% answered affirmatively.

4) Functional Tests Scores: The majority of the subjects
(253 out of 281) were able to complete all functional tests.
Out of the 281 subjects, 13 subjects did not perform the TUG
test, 14 subjects were unable to complete the Step test, and 17
subjects were unable to do the 30 s STS test. Only eight subjects
were unable to perform any standing position of the 4Stage test,
whereas all participants completed the 10 Meter Walk test. Data
from the subjects who were only capable of performing one or
two tests were still considered for analysis.

5) Individual Predictive Value: We performed a statistical
analysis of the individual predictive value of each feature for
the prediction of 12 months prospective falls. The differences in
the functional test scores between fallers and non-fallers were
not statistically significant (p-value > 0.05). The difference
between the two groups was statistically significant for the
features highlighted in bold in Table I.

B. No Data Fusion - Individual Data Sources

The classification performance metrics using each data source
individually were retrieved from the inner loop of the late fusion
approach to access the predictive value of each source. The re-
sults were grouped by the data source, feature selector, classifier,
and grid search score. The average results for the 50 test sets were
computed, and the highest recall values were retrieved as listed
in Table II.

According to Tukey’s HSDT performed for the single-step
multiple comparison between the data sources, the averages
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TABLE II
AVERAGE RESULTS FOR EACH DATA SOURCE (MEAN AND STANDARD

DEVIATION OF THE 50 TEST SETS, IN %)

S: sig. different from personal; I: sig. different from inertial; P: sig. different
from platform.

of the accuracy and specificity were not significantly different
across all data sources. For the AUC and recall, only the average
of the personal data was significantly different from that of the
inertial data. For the F1-score and precision, only the averages
of the personal data were significantly different from that of the
inertial and platform data.

C. Early, Late, and Slow Fusion Approaches

The same classification pipeline was employed for the early
and late fusion approaches. For the early fusion approach, we
used a combined feature vector with information from the three
sources of data and ran it through the classification pipeline
illustrated in Fig. 2. For the late fusion approach, the data
were split into inertial, pressure platform, and a combination
of clinical and self-reported data. The pipeline shown in Fig. 2
was optimized using each source of data individually and then
the best estimator for each source of data was combined using
voting classification. Finally, the evaluation using the test set
was performed.

1) Early Fusion Approach: According to the early data fu-
sion approach, clinical, self-reported, and multisensor data were
fused using feature fusion prior to the classification pipeline. In
addition to the clinical and self-reported data retrieved mainly
from questionnaires (categorical data) and measured variables
(e.g., timed tests or anthropometric characteristics), we em-
ployed features engineered from the raw signals of the inertial
sensors and pressure platform. The initial analysis was per-
formed individually for each type of sensor data. After retrieving
features from the inertial sensor and pressure platform signals,
they were combined in a unified feature vector together with
clinical and self-reported data. This feature vector was then used
for the optimization of the grid search pipeline and for retrieval of
the best estimator. The resulting feature vector included 229 fea-
tures extracted from the three data sources for 281 participants
(aged over 65). The results were grouped by the data source,
feature selector, classifier, and grid search score. The average
results for the 50 test sets were computed and the highest recall
values were retrieved as listed in Table III. The best combination
was PCA, Decision Tree and recall as grid search score function.

2) Late Fusion Approach: In the case of the late fusion
approach, the same procedure as described for the early fu-
sion was applied; however individual data sources were used
in this case. We combined the predictions of three different

TABLE III
AVERAGE RESULTS FOR EARLY, LATE, AND SLOW FUSION (MEAN AND

STANDARD DEVIATION OF THE 50 TEST SETS, IN %)

S: sig. different from slow.

estimators (based on individual inertial, pressure platform, and
clinical/self-reported data) using a voting classifier. The feature
vector constructed based on the inertial data comprised 125
features. In particular, we extracted 59 features from the pressure
platform data and 44 features from the clinical/self-reported
data. The model selection method was the same as described
for the early fusion. The best combination was PCA, Decision
Tree, and recall as the grid search score (Table III).

3) Slow Fusion Approach: The slow fusion approach slows
the process of fusing estimations by using a MLP to com-
bine multiple data sources. In this case, we mixed information
from each data source in the middle layers of the MLP, where
the output from each individual stack of layers for each data
source was concatenated in the last layers of the MLP. The three
branches operated independently from each other until they were
concatenated. In this way, we designed a network with three
inputs and one output. The average results for the 50 partitions
of the dataset are reported in Table III.

According to the Tukey’s HSDT performed for the single-step
multiple comparisons between the fusion methods, the averages
of the AUC and precision were not significantly different across
the fusion methods. For the remaining performance metrics
(accuracy, F1-score, recall and specificity), only the difference
between the averages of the early and late fusion approaches
was not significantly different.

V. DISCUSSION AND CONCLUSION

We tested three approaches for multisource data fusion,
namely, early, late, and slow fusion, using the procedure illus-
trated in Fig. 1. We investigated the impact of fusing data at
different stages of the pipeline on the obtained results. In this
study looking at predicting falls in elderly, similar results were
found for the majority of the considered performance metrics.
Nevertheless, it should be noted that the late and slow fusion
approaches can provide a set of advantages regarding the de-
ployment of a prediction system. For example, a system capable
of dealing with fewer sources of information can be designed and
trained when a certain data source is not available. Moreover,
we found that recall was more important than specificity, for
the predictive system considered in this study, since the fall
risk screening was used to select elderly with a higher risk of
fall that should be considered for fall prevention. It would be
preferable to minimize the error of losing a potential faller (i.e.,
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maximizing recall) instead of losing a potential non-faller (i.e.,
maximizing specificity). This rationale was used to select the
best models among all possible combinations in the optimization
pipeline.

We compared each data source, regarding their predictive
value individually. The inertial and platform data alone revealed
a higher F1-score and precision compared with those of the
personal data. Furthermore, the inertial data alone allowed to
achieve a higher AUC and recall compared with those obtained
when considering only the personal data. These results reinforce
the added value of sensor instrumentation in fall risk screening
protocols.

The average results obtained for the early and late fusion
approaches were not statistically different from each other,
which may indicate that the different data sources were highly
correlated. The early fusion approach can be preferred given its
lower computational requirements. The slow fusion approach
obtained a higher accuracy score but a lower F1-score. The
standard deviation of all scores achieved by this fusion approach
was lower compared with those of the other approaches because
the pipeline for slow fusion was only optimized for one loss
function. By optimizing for cross entropy, the model with slow
fusion retrieved a higher specificity and lower recall compared
with the early and late fusion approaches. The slow fusion
approach can also be useful in scenarios where specificity is
more important than recall.

To the best of our knowledge, no previously published work
has attempted to study different approaches to data fusion using
multiple sources of data for prospective fall prediction. However,
we found one previous work that reported a late fusion approach
with clinical and inertial data for retrospective fall prediction val-
idated using nested CV [20]. The authors reported a significant
added value of data fusion compared with analyzing individual
data sources. The majority of previous studies report the use
of a combination of personal (clinical and self-reported) data
and one source of sensor data (either inertial sensors, pressure
platform, or other types of sensor-based data) in an early fusion
approach.

Furthermore, the classification and validation pipeline used
in this study covers different stages of optimization.

We reported the results for a test set that was not used
during the training of the proposed grid search pipeline. The
lack of an external test set, which is considered to be essential
for the evaluation of trained models to avoid overfitting, has
been considered as one of the main disadvantages of previous
studies [2]. Moreover, few studies have used neural networks
for the prediction of falls or employed slow fusion approaches,
which are more common for video classification [18].

Providing the results of this study, as our future work we
consider studying different methods for feature processing and
training different types of classifiers that are more suitable for
each data source. Furthermore, it is possible that the nature of
falls is not completely covered by the screening protocol used
in this study. For example, once an elderly person with poor
functional capabilities and clinical history of associated fall risk
factors is institutionalized, the fall probability is reduced due to
the resulting movement restriction. Adding strategies for data

pre-processing and variables that better describe the unexpected
nature of fall occurrences should be considered.
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