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Abstract—Several fall risk factors contribute to a fall, being
most of them related to the person physical capabilities as mobil-
ity, balance control, and muscle strength. Several fall prevention
programs are reported to revert fall-related factors, however
there is a lack of personalization in these solutions. This paper
describes a technological solution to be used by physiotherapists,
at the clinic, for an objective analysis of fall prevention exercises,
personalized exercise prescription and progression assessment
over time. The exercises are monitored with two wearable inertial
sensors and a pressure platform for mobility, strength and
balance assessment. In order to validate the system, a set of
five exercises, from the Otago Exercise Program, were tested
with a group of 16 elderly volunteers during several sessions.
Spatial, temporal and balance metrics were extracted during the
exercises, providing quantitative feedback during the exercise.
The results indicate that inertial and pressure sensors are suitable
for exercise tracking during fall prevention exercises. Range
of motion, weight distribution and shifting, balance and cycle
identification were successfully monitored for all exercises.

Index Terms—Fall prevention exercises, Wearable inertial sen-
sors, Pressure platform, Otago exercise program, Physiotherapy

I. INTRODUCTION

The incidence of falls is higher in persons aged above
65 years old when compared to any other age group. Every
year, one out of three elderly falls and the complications of
the falls are reflected in a decrease of the quality of life,
physical activity restriction, fear of falling, social isolation and
ultimately cognitive decline. Moreover, falls are responsible
for several institutionalizations and loss of independence in
this population [1] [2]. Most factors underlying a fall are
intrinsic to the person. These factors are related to mobility
capabilities, balance control, muscle strength or other disorders
that affect the sensory system [1]. Currently, there are a variety
of tools, questionnaires and functional tests to evaluate one
or more fall-related factors [1]. These fall risk factors are
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amendable and could be minimized or reverted when the elder
follows a fall prevention program based on physical exercises
for mobility, strength and balance retrain.

Fall risk screening is crucial for triggering adequate fall
prevention strategies. However, there is a need for integration
between fall prevention solutions and fall risk assessment
methodologies, which results in a lack of standardization and
personalization of fall prevention programmes [1] [2]. Techno-
logical solutions could provide healthcare professionals with
quantitative feedback on the exercises execution and patients’
progression, when submitted to fall prevention programs.

This paper describes a technological solution for supporting
fall prevention exercises at physiotherapy clinics. The outcome
for the healthcare provider will be the delivery of personalized
fall prevention exercises, analysis of exercise-related metrics
extracted by inertial and pressure sensors and exercise progres-
sion analysis over time. For the elderly, the outcome will be an
expected higher engagement during the program, provided by
the continuous and interactive feedback during the exercises
and awareness of preventive strategies to reduce falls.

The remainder of this paper is organized as follows. Section
II describes several prior art technological solutions for fall
preventions. Sections III to IV describe the proposed system,
the exercise programme, along with the underlying method-
ology. Section V presents the validation results using the
proposed system and Section VI summarizes final conclusions,
main contributions and directions for future work.

II. RELATED WORK

There are several technological solutions for fall prevention,
that rely on inertial sensors, pressure platforms or cameras
for exercise monitoring, and to provide feedback to the user.
Riablo system consists of a tablet with a keyboard, a pressure
mat and 5 inertial sensors, which guide the user in every
exercise, through a video game interface [3]. The solution
includes 15 exercises for balance control, recover of the
fluidity of motor gestures, and walk, providing real time
feedback of flexion angle and target angle definition in the
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interface. VERA is a digital therapy platform that brings the
guidance of a physical therapist into home, using the Kinect
camera, that tracks 22 joints on the body [4]. The solution is
delivered using video games with an avatar that guide the user
movements through a virtual strength and balance exercise
program. SWORD Phoenix is a rehabilitation platform, that
provides assessment, prescription, exercise tailoring, training
and progress evaluation, using wearable inertial sensors [5].
The solution could be used at home or at clinics and pro-
vides vibratory feedback on the major upper or lower limb
joints, based on wearable 3D movement analysis. Rehamet-
rics Physical Module includes 40 exercises with extensive
personalization options which enables clinicians to prescribe
therapy and monitoring using the Kinect and the Wii Balance
Board [6]. The 3D Tutor uses a wearable sensor that could be
placed in the head, trunk, upper and lower extremities [7]. The
system gives movement-related instructions that prevent the
development of undesired and compensatory joint movements,
ensuring better performance of functional tasks. It could be
used in physical and occupational therapy centers. BalanSens
is a wearable sensor system for balance assessment, that uses
wearable inertial sensors to estimate and report hip and ankle
angles and center of mass related metrics. The system can be
used at home or at clinics [8]. Most of the described systems
are not designed for fall prevention, but for general physical
rehabilitation, thus they may not incorporate the specificities
of fall prevention exercise programs. The majority of the
solutions rely only on wearable inertial sensors, for exercise
monitoring, and lack a pressure platform for balance analysis
and retraining. The combination of both sensor devices, has
the advantage of enabling real time feedback of the plantar
pressure distributions and center of pressure variations accord-
ing to each movement phase, for each exercise. This real-time
feedback allows the healthcare provider to promptly access and
correct the elders’ posture and weight distribution during all
phases of the exercise. Moreover, few systems include a cloud
platform dedicated to the healthcare provider for progression
assessment and visualization of exercise-related metrics over
time. This information is valuable to personalize each exercise
parameters, allowing to retrain specific movements of each
exercise, that are executed with more difficulty.

III. TECHNOLOGICAL SOLUTION

A. System Description

The proposed technological solution aims to prevent falls
by promoting physical exercise and reinforcing the correct
execution of the exercises. The system was designed to allow
its personalization for each user, by enabling the selection of
individual exercise plans by the therapist, based on the user’s
profile and previous history. Moreover, the system provides
an intuitive way to view instructions for each exercise and to
monitor and evaluate each exercise performance over time.

The starting point was to create a platform that could easily
be used to apply the Otago Exercise Programme (OEP), given
that it has been validated to effectively reduce falls [9]. In
order to provide physical exercise monitoring, the system was

Fig. 1. Healthcare provider and elder interaction with the Clinical Tool during
the Knee Flexion exercise. Real-time exercise monitoring using an inertial
sensor (A) and a pressure platform (B). Feedback is provided on the screen
(C) during the entire exercise, with the current series information, number
of performed repetitions, movement phases indication and plantar pressure
distributions (heat map).

equipped with two inertial measurement units and a pressure
platform. These sensors allow the system to monitor the
user’s movements in real time and to extract relevant exercise
metrics, in order to provide feedback to the user. The real time
feedback is provided at all times encompassing the current
and target number of repetitions, an arrow pointing up and
down for indicating the ascending and descending phases of
the movement, respectively, and a heat map representing the
different intensities for plantar pressure distributions (Fig. 1).
These metrics are saved in a cloud database and could be used
to track performance and assess overall progression over time.

B. Otago Exercise Programme for Fall Prevention

The OEP is a set of leg muscle strengthening and balance
retraining exercises, that has shown to be effective in reducing
by 35% the number of falls [10]. The program is individually
prescribed and delivered at home by trained instructors. A
subset of exercises from the OEP were selected, aiming to
provide subjects with support during the learning process of
the OEP at the clinic and envisioning its extended use at home.

Strengthening exercises focus on major lower limb mus-
cles: knee flexors, knee extensors, and hip abductors, ankle
dorsiflexor and plantar flexor muscles. Progression in these
exercises is achieved by increasing the number of repetitions to
perform and/or by adding weights (strapping weighted bands
around the ankles) to the exercise. Knee flexion (KF): subject
starts standing up and then bends the knee, bringing the foot
toward the bottom and returning to the starting position. Calf
raises (CR): subject starts with the feet shoulder-width apart,
come up onto the toes and then lower the heels to the ground.

Balance retraining exercises focus on reinforcing body
balance recovery using lower body exercises. Progression
is ensured by removing support (e.g. stable structure) or
increasing the number of repetitions to perform. Knee bends
(KB): subject starts with the feet shoulder-width apart, then
squat down half way, bending the knees. Sit to stand (STS):



subject starts seated on a chair, placing the feet behind the
knees. Then, he leans forward over the knees, pushing off with
both hands to stand up. Tandem stance (TS): subject places
one foot directly in front of the other foot, so the feet form a
straight line and holds this position for 10 seconds. Then, he
changes the foot behind and holds this position for 10 seconds.

IV. EXERCISES MONITORING

Exercise monitoring is provided by two inertial sensors
located in the lower limbs and a pressure platform placed on
the ground. All exercises performed in the same place are
evaluated using both sensors. The monitoring algorithms use
both sensor sources to extract exercise metrics. Identification
of the exercise repetitions, duration and ROM are provided by
the inertial sensors while balance information is given by the
pressure platform.

A. Inertial Sensors

1) Specifications: A wearable device, Pandlet (Fraunhofer
Portugal AICOS), equipped with an inertial measurement unit
(IMU), composed by a tri-axial accelerometer, a tri-axial
gyroscope and a tri-axial magnetometer, was used to acquire
inertial data during the exercises at 50Hz [11]. Data was
transmitted using BLE wireless technology to a main computer
where the processing occurs.

2) Data analysis: IMU’s measures acceleration, angular
velocity and magnetic field direction, being widely used to
estimate position and 3D orientation. Due to their ability to
sense environment properties, a sensor fusion strategy was
employed to estimate the attitude of the device relative to a
fixed coordinate system (north-east-down) [12]–[14]. This was
achieved by fusing relevant information from each sensor with
a second order complementary filter [12], [13]. The relative
orientation of the device over time was estimated for all time
instants and represented by means of a quaternion [14].

The sensor fusion algorithm combines the long-term refer-
ence to the gravity direction provided by the accelerometer
with the short-term accuracy of the gyroscope for measuring
angular rotation. Magnetometer data were not considered, so
no reference to the true North was available, being the fixed
coordinate frame composed of a vertical axis (down axis -
aligned with the gravity) and two arbitrary horizontal axis
which would not necessarily point to the North and East
directions. Nevertheless, relative changes in orientation can
be calculated using this method.

Orientation quaternions derived from the complementary fil-
ter were used to convert readings from the sensor frame to the
reference frame mentioned above [14]. Using this approach, an
average of the first accelerometer readings and the estimated
quaternions was calculated during a 5 seconds window, that
corresponds to each exercise initial stance. Moreover, this
initial stance characterization was only performed when the
subject was not moving, corresponding to the stance of the
subject when he initiated the movement. After the initial
stance calculation, each new estimated quaternion was used
to track orientation changes of the moving limb relatively

to its initial stance. This relative joint angle estimation was
obtained using the dot product operation between the initial
stance accelerometer vector and a rotated version of it (given
by the current quaternion), in order to map the current limb
orientation relatively to its initial orientation.

This strategy was employed due to its simplicity and mainly
because it does not require any specific calibration proce-
dure neither a specific sensor orientation placement (device
orientation is arbitrary). However, this approach outputs un-
signed angles, which do not allow a fully characterization of
the movement executed in all planes of movement, i.e., the
direction of the movement is unknown. Most of the Otago
exercises are cyclic and relatively simple to perform involving
movement in only one plane (e.g. KF exercise - bending the
knee back and forth) which can accurately be monitored with
the proposed method. Simplicity on the sensors setup over
additional movement detail was chosen for this system in
order to keep it easy to use (either at clinics or at home) and
functional. Pandlets’ placement on the body was optimally
chosen for each exercise, in order to be coincident with the
direction of the required movement and to ensure the best
possible estimation of the ROM. For the KF exercise, two
Pandlets were placed laterally in each person’s right and left
ankles, respectively. For the CR exercise, each Pandlet was
placed on the instep of the right and left foot, respectively.
For the KB and STS exercises, one Pandlet was placed on the
right ankle (laterally) and the other one on the middle of the
thigh (laterally for the KB and centrally for STS). The Pandlets
were not used for TS exercise monitoring. Estimated joint
angles were used to identify each repetition of each exercise
and correspondent phase.

For exercises with multiple repetitions, spatial and temporal
metrics were extracted, for each repetition and for each move-
ment phase, such as the number of cycles, joint angles, ascend-
ing and descending phases duration and exercise duration. A
full cycle/exercise repetition was considered when the subject
reaches the minimum pre-established target angle, previously
defined with a group of physiotherapists for each exercise, and
then returns to the initial position. Ascending phase duration
was defined as the elapsed time since the initialization of
each cycle movement and the moment when the correspondent
target angle is reached. Descending phase duration was defined
as the elapsed time since the moment when the target angle
was reached until the moment it returns to the correspondent
initial position. Cycle duration was defined as the sum of the
ascending and descending durations. The exercise duration
was defined as the elapsed time since the beginning of the
exercise until the defined number of repetitions is reached.

B. Pressure Platform

1) Specifications: PhysioSensing platform (Sensing Future
Technologies, Lda) measures pressure distribution at 50Hz.
It comprises 1600 pressure sensors (10mm by 10mm) with
maximum value of 100N/sensor. The size of the active area
of the pressure platform is a square matrix of 40cm x 40cm.
Voltage data are converted with an 8-bit A/D converter and is



transmitted via USB (Universal Serial Bus) [15] to the main
computer. It is possible to receive raw data of each pressure
sensor, in a scale from 0 to 255, as well as raw center of
pressure coordinates (CoP) in centimeters (cm).

2) Data analysis: Several balance metrics are retrieved
during the exercise execution. For exercises with multiple rep-
etitions, the balance metrics are extracted for each repetition
and for each movement phase, i.e., ascending and descending
phases, priorly identified by the inertial sensors. Balance
metrics were extracted as described in [15]. From the CoP,
several metrics were retrieved as the 95% confidence ellipse
area, sum of oscillation, standard deviation of oscillation and
sway range (difference between the maximum and minimum
oscillation). From the matrix of pressure distribution, each foot
weight was retrieved. Each foot pressure data were divided
taking into consideration half of the matrix. For each half of
the matrix, the sum of the active cells was calculated, that
represents the pressure applied by each foot on the platform.
Given the weight of the subject and the sum of the right and
left foot active cells, the mean cell unit weight was calculated.
For each foot, the sum of active cells was multiplied by the
unit cell weight to give each foot weight.

C. Validation Tests

A group of 16 elderly (12 females) with mean age of 74.1 ±
10.1 years old was recruited to perform several sessions using
the system. Although the OEP is designed to be implemented
at home, the prescription and initial validation tests were
conducted in a physiotherapy clinic. The tests were monitored
by a healthcare professional in order to ensure compliance,
proper exercise execution and monitoring during the whole
session. In average, each subject participated in 8 sessions.

V. RESULTS & DISCUSSION

A. Identification of each exercise repetition

In order to evaluate the system capability to identify each
exercise repetition, a manual inspection of the each exercise
joint angle signal was conducted. Each subject participated in
approximately 8 different sessions overtime, which resulted
in a large number of signals eligible for manual inspection.
Thus, only each subject’s last session manual inspection was
performed, encompassing joint angle data from KF, CR, KB,
STS exercises, yielding 65 signals for analysis. Moreover,
monitored joint angle data was available for all time instants
providing the necessary means for the identification and
validation of each exercise repetition, according to the pre-
established exercise criteria. The positive condition was to
detect a repetition, while the negative condition was to not
detect it. The ground truth was provided by the physiotherapist
annotations. Performance metrics such as precision or positive
predictive value (PPV), recall or true positive rate (TPR), false
negative rate (FNR) and false discovery rate (FDR) were used
to evaluate the proposed system performance (Table I) [16].

As it can be seen in the Table I, the results from the overall
system performance indicate that the system can be suitable
for exercise monitoring purposes, especially for KF and CR

TABLE I
SYSTEM PERFORMANCE RESULTS FOR IDENTIFICATION OF EACH

EXERCISE REPETITION.

Exercise PPV TPR FNR FDR
Knee Flexion 1.0 0.98 0.02 0
Calf Raises 0.96 0.93 0.07 0.04
Knee Bends 1.0 0.75 0.25 0
Sit to Stand 1.0 0.77 0.23 0

exercises. These exercises obtained a recall and precision
above 90%, with almost no false detected cycles neither
missing cycles (FNR and FDR < 0.1).

For the KB and STS exercises, the results are similar, how-
ever a higher number of missing cycles was obtained. These
higher values of FNR can be related to the more challenging
nature of these type of exercises, suggesting that exercise target
angle (target ROM) should be re-adjusted and personalized for
each user in order to achieve a more cost effective solution by
matching the individual needs and difficulties of each subject.
Despite the latter fact, the remaining performance metrics were
within acceptable values (FNR ≤ 0.25 and Recall ≥ 0.75)
suggesting that these two exercises can be monitored with the
proposed solution.

Although no direct comparison can be performed, due to
different sample sizes and subjects’ age distributions, the
obtained results are in line with the ones obtained in previous
work [17]. Both studies concluded that previous knowledge
of some exercise-related parameters (e.g. expected ROM)
are essential to validate each repetition. The work of [17]
accomplished this by using a ”Teach-in Mode”, where a
reference model for each exercise was built and used as a
tailor-made gold standard, acquired according to the user’s
capabilities. On the other hand, in the work of [18], a target
ROM was previously defined for each exercise and reached
in all repetitions since their primary focus was to validate
the angular measurements and sensors misplacements rather
than counting exercise repetitions. Yet, they concluded that an
user-oriented exercise prescription and analysis will not only
encourage the users to keep exercising as well as continuously
improving their exercise skills over time.

B. Exercise metrics extraction

Inertial and pressure platform metrics were extracted for all
subjects, all sessions and all repetitions. Samples with null
metrics were removed, as well as, sessions with errors. The
exercises were grouped by type, i.e., unilateral and bilateral
exercises. Unilateral exercises use each limb at a time, as the
KF and TS exercises, while bilateral exercises require the use
of both limbs together, as the CR, KB and STS exercises. For
the unilateral exercises, the metrics were extracted for each leg,
while for the bilateral exercises, the metrics were extracted for
each movement phase, ascending and descending.

For the TS, it was considered that the feet were placed
diagonally in the pressure platform, so the weight was cal-
culated for the upper left triangle and for the lower right



triangle. The exercise is performed firstly with the right leg
in the front and secondly with the left leg in the front. For the
CR exercise, only the ascending phase of the movement was
analyzed with the pressure platform. For the KB exercise, the
ascending phase was considered when the person stretches the
legs and the descending phase was considered when the person
bends the knee. For the STS, it was considered the standing as
the ascending phase and the sitting as the descending phase.

The approach used for relative joint angle estimation was
previously proved to be capable of measuring joint angles with
an acceptable accuracy (averaged error ≤ 9° when compared
to Kinect or video analysis systems) [13]. This error was
similar to the one obtained when using traditional goniometer
measurements at clinics (errors of 6 or 7°) [12], [13], but
higher than the error obtained by [18] (error of 5°).

C. Statistical analysis

A statistical analysis of the inertial and pressure platform
metrics was conducted to compare right and left leg move-
ment execution (unilateral exercises) and to compare different
movement phases, i.e. ascending and descending (bilateral
exercises). A two-tailed t-test was used to evaluate statistical
significance of all metrics with 95% confidence interval. The
average and standard deviation of all inertial and pressure
platform metrics are displayed for the unilateral exercises in
the Table II and for bilateral exercises in the Table III.

TABLE II
INERTIAL SENSORS AND PRESSURE PLATFORM METRICS FOR THE

UNILATERAL EXERCISES: KF AND TS. VALUES ARE THE MEAN
(STANDARD DEVIATION), ACROSS ALL SUBJECTS, SESSIONS AND

REPETITIONS.

Metric KF TS

R
ig

ht
L

eg

Angle (degrees) 37.7 (7.1)∗ –
Asc. Duration (sec) 0.98 (0.32) –
Desc. Duration (sec) 2.4 (0.44)∗ –
Cycle Duration (sec) 3.5 (0.48)∗ –

Ellipse Area (cm) 2.45 (3.28)∗ 1.62 (1.36)
Stdev Oscillation (cm) 0.26 (0.20)∗ 0.13 (0.06)
Sum Oscillation (cm) 2.56 (1.70)∗ 13.32 (6.43)

Sway range (cm) 0.99 (0.76)∗ 0.65 (0.30)
Lower Weight (kg) – 47.89 (7.82)∗
Upper Weight (kg) – 16.29 (6.99) ∗

L
ef

t
L

eg

Angle (degrees) 39.36 (8.55)∗ –
Asc. Duration (sec) 0.99 (0.23) –
Desc. Duration (sec) 2.82 (0.68)∗ –
Cycle Duration (sec) 3.81 (0.64)∗ –

Ellipse Area (cm) 4.91 (7.19)∗ 1.65 (1.20)
Stdev Oscillation (cm) 0.39 (0.30)∗ 0.13 (0.06)
Sum Oscillation (cm) 3.65 (2.63)∗ 13.85 (6.29)

Sway range (cm) 1.48 (1.16)∗ 0.66 (0.29)
Lower Weight (kg) – 49.94 (9.80) ∗

Upper Weight (kg) – 18.34 (7.94) ∗

To
ta

l Number cycles 19.37 (2.43) –
Duration (min) 3.66 (0.81) 0.97 (0.23)

(∗) Statistical significance between legs (p-value≤0.05)

1) Unilateral exercises: Considering the KF exercise, it was
verified that differences between the platform metrics for the
right and the left legs were all statistically significant (p ≤
0.05). On the other hand, statistically significant differences for

the Angle, Descending Duration and Cycle Duration inertial
metrics were found between the right and left legs. Observed
differences between legs could be related to an injury, muscle
imbalance or the fact that each person has a dominant leg, that
will grant more control of the whole leg movement over the
non-dominant leg. However a more detailed analysis must be
performed in order to correlate these findings. These findings
showed that differences in movement execution between dif-
ferent legs can be identified and monitored with this system,
enabling exercise personalization throughout sessions, when
needed. For example, muscular weakness after a knee surgery,
muscular imbalances and asymmetries can be tackled using
this type of analysis by customizing exercise parameters and
sessions until no differences in exercise execution between
different legs can be observed.

For the TS exercise, the differences between the platform
metrics with the right leg in the front and with the left leg in
the front were not statistically significant (p > 0.05), except
for the Upper Foot Weight and Lower Foot Weight. These
differences are due to the fact that the person may apply
higher weight in the back leg in order to maintain balance
during the tandem position. The CoP variations are explained
by the compensatory oscillations of the person to retrain a
stable position.

TABLE III
INERTIAL SENSORS AND PRESSURE PLATFORM METRICS FOR THE

BILATERAL EXERCISES: KB, STS AND CR. VALUES ARE THE MEAN
(STANDARD DEVIATION) ACROSS ALL SUBJECTS, SESSIONS AND

REPETITIONS.

Metric KB STS CR

A
sc

en
di

ng

Duration (sec) 2.56 (1.4)∗ 1.51 (0.39)∗ 0.89 (0.28)∗
Ellipse Area(cm) 3.05 (3.73) 43.21 (64.52) 5.10 (4.05)
Stdev Oscil.(cm) 0.15 (0.09) 0.66 (0.56) 0.26 (0.11)
Sum Oscil.(cm) 4.67 (1.87)∗ 13.23 (6.82)∗ 13.97 (4.96)

Sway Range(cm) 0.56 (0.32)∗ 2.86 (2.67)∗ 1.45 (0.84)
Left Weight(kg) 33.67 (7.42) 34.08 (11.0) 31.24 (6.93)

Right Weight(kg) 32.64 (5.01) 32.32 (9.90) 34.48 (5.32)

D
es

ce
nd

in
g

Duration (sec) 1.41 (0.38)∗ 3.59 (1.63)∗ 2.73 (0.51)∗
Ellipse Area(cm) 3.08 (4.74) 49.41 (96.75) –
Stdev Oscil.(cm) 0.14 (0.08) 0.66 (0.71) –
Sum Oscil.(cm) 7.73 (3.98)∗ 24.38 (16.64)∗ –

Sway Range(cm) 0.63 (0.37)∗ 3.87 (4.74)∗ –
Left Weight(kg) 33.79 (7.47) 34.19 (11.0) –

Right Weight(kg) 32.66 (5.03) 32.38 (10.0) –

To
ta

l Angle(degrees) 27.83 (8.99) – 14.24 (4.1)
Number cycles 13.30 (4.26) 11.37 (4.89) 19.93 (0.29)
Duration(min) 2.69 (0.83) 2.80 (1.24 ) 3.71 (0.41)

(∗) Statistical significance between phases (p-value≤0.05)

2) Bilateral exercises: Considering the bilateral exercises
group, statistically significant differences were observed for
the Duration metric between the ascending and descending
phases, for all evaluated exercises (p ≤ 0.05). These findings
indicate that each exercise ascending and descending move-
ments could not be performed uniformly, suggesting that a
higher degree of difficulty was experienced when performing
one of these two movements, although a more thorough
analysis must be performed to validate these time differences.



However, as mentioned for unilateral exercises, this type of
information could support the physiotherapist to personalize
each exercise by targeting and work more the movement phase
in which each subject reveals more difficulties. This type of
approach might be valuable to either clinicians or elderly, for
effectively improve strength and coordination.

For KB and STS exercise, the differences between ascend-
ing and descending platform metrics were not statistically
significant (p > 0.05), except for the Sum Oscillation and Sway
Range metrics. This exercise also obtained the highest values
in the platform metrics due to the higher variation in the center
of pressure during the exercise, while sitting and standing
transitions. For CR exercise, any comparison between phases
was made because only the ascending phase was analyzed.

VI. CONCLUSIONS

The goal of this system was to provide a technological so-
lution for supporting falls prevention at physiotherapy clinics,
based on the clinically validated OEP. The solution should
enable the prescription of personalized exercise plans based
on individual needs, provide real-time feedback during exer-
cises and generate detailed progression reports. Strength and
balance retraining during the exercises was monitored using
a pair of wearable sensors together with a pressure platform.
Thus, relatively to other fall prevention based technological
solutions on the market, it grants the advantage of providing
movement characterization, balance information and pressure
distributions simultaneously, on every movement.

Overall, the system works effectively for exercise moni-
toring purposes not only by providing an accurate exercise
repetition detection, but also by extracting relevant exercise
information (spatial, temporal and balance metrics) for all
tested exercises. Moreover, real time feedback of the number
of repetitions, plantar pressure distributions, center of pressure
variations and exercise time-related instructions were provided
to both elderlies and healthcare providers. All extracted met-
rics during the exercises were stored in a cloud database
constituting a web health record platform, specially designed
for the healthcare providers. This platform allows exercise data
visualization overtime enabling the tracking of each subject
evolution and performance results between sessions.

The obtained results for all tested exercises were promising,
constituting a valuable source of information for clinical
practice or even for home-based rehabilitation solutions. The
proposed Clinical Tool could constitute a complete solution
for elderly mobility assessment and evaluation over time, since
it combines simultaneously inertial and pressure data (which
was not present in other studies) and exercise tailoring, by
enabling the sustainable increased in terms of difficulty in each
exercise, without discarding proper balance control and weight
distributions during the exercises.

Future improvements include a systematization of the over-
all process involved in fall prevention strategies by enabling
the implementation of more physical exercise programmes,
by providing automatic exercise plan recommendation based
on the user history and allowing its personalization for each

exercise. By adjusting the exercise plan and settings, each
individual will have the possibility to work on a particular
physical limitation that may exist and to continuously evolve
over time. Moreover, the web health record platform will also
have the possibility to generate individual exercise reports with
the most meaningful information, recommend new exercises
or suggest an increase in difficulty and allow specific exercise
parameters adjustment (target ROM, number of repetitions,
etc). Finally, clinical trials for validating the effectiveness of
this solution for reducing the fall risk are needed and will be
crucial for validating a technological solution based on a fall
prevention programme.
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and I. Sousa, “Inertial sensors for assessment of joint angles,” Proceed-
ings of the 4th Workshop on ICTs for improving Patients Rehabilitation
Research Techniques, pp. 9–12, 2016.

[14] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a good attitude: A
quaternion-based orientation filter for imus and margs,” Sensors, vol. 15,
no. 8, pp. 19302–19330, 2015.

[15] J. Silva, J. Madureira, C. Tonelo, D. Baltazar, C. Silva, A. Martins,
C. Alcobia, and I. Sousa, “Comparing machine learning approaches for
fall risk assessment.,” in BIOSIGNALS, pp. 223–230, 2017.

[16] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, (New York, NY, USA), ACM, 2006.
pp.233–240.

[17] G. Bleser, D. Steffen, M. Weber, G. Hendeby, D. Stricker, L. Fradet,
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