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Abstract

The worldwide population is aging rapidly. The process of aging affects the ability of a person
to maintain balance, mobility, and muscle strength and to react properly to unexpected situations
such as slipping or stumbling. There is currently no standardized protocol to assess the level of
fall risk, neither in clinics and hospitals nor in daycare centers. Preventive strategies should be
planned and implemented in order to decrease the prevalence of falls among the elderly. These
strategies should be based on a multifactorial fall risk assessment that can be implemented with
objective measures. The occurrence of falls is not always predictable and early assistance after a
fall could decrease its negative effects. Currently, there is a shortage of automated procedures to
rapidly deploy fall detection models adapted for different use-cases. Likewise, there is also the
need for common datasets and methodologies to benchmark those models.

This thesis focused on the study of a multifactorial fall prediction system and the study of a
wearable-based automatic fall detection system. The development of a multifactorial fall predic-
tion system blended the study of feature extraction methods based on the instrumentation of fall
risk assessment tests and the study of data fusion procedures to combine data sources, such as
clinical, self-reported and sensor-retrieved data. For the advancement of automatic fall detection
systems, we considered the impact of several variables in the system’s performance: the type of
dataset, composed of simulated or real-world data, the on-body positions to couple the wearable
device, and restrictions related with the deployment hardware, such as sampling rate, algorithm’s
sensitivity level, and models complexity.

We contributed with different data fusion approaches for fall prediction based on the analysis
of multimodal data collected according to a multifactorial screening protocol. The instrumentation
of fall risk assessment tests with inertial sensors and pressure platform allowed to better discrimi-
nate the individuals with higher risk of falling. We also proposed a wearable solution for automatic
fall detection, based on a low-power state machine algorithm, that can be adapted to different fall
risk levels. We studied the impact of type of dataset, learning models, on-body positions and sam-
pling rate in fall detection performance. A new machine learning pipeline was able to generalize
to a new unseen position considering a user-independent validation and a lower sampling rate.

In the future, the work presented in the area of fall prediction could be used as a standard
multifactorial fall prediction tool based on inertial and pressure devices, to provide a protocol to
assess elderly fall risk in the community. The added value of features extracted from sensors could
enhance the healthcare professional assessment of physical conditions such as balance, mobility
and strength abilities, as well as personal and contextual information. The automation of fall
detection systems will allow in the future to expedite the deployment of such systems and to
accelerate the time to prototype after selecting the most suitable model’s requirements.

Keywords: Aging. Fall Prediction. Fall Detection. Wearable Devices. Inertial Sensors.
Pressure Platform. Signal Processing. Machine Learning. Statistics. Multifactorial Data Fusion.
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Resumo

A população mundial está a envelhecer rapidamente. O processo de envelhecimento afeta a capaci-
dade de uma pessoa manter o equilíbrio, a mobilidade e a força muscular e reagir adequadamente
a situações inesperadas, como escorregões ou tropeções. Atualmente, não existe um protocolo
padrão para avaliar o nível de risco de queda, nem em clínicas e hospitais nem em centros de
dia. Estratégias preventivas devem ser planeadas e implementadas para diminuir a prevalência
de quedas entre os idosos. Essas estratégias devem basear-se numa avaliação de risco de queda
multifatorial que pode ser implementada com métricas objetivas.

A ocorrência de quedas nem sempre é previsível e a assistência rápida após uma queda pode
diminuir os seus efeitos negativos. Atualmente, há uma escassez de procedimentos automatizados
para implementar rapidamente modelos de deteção de queda adaptados a diferentes casos de uso.
Da mesma forma, também há a necessidade de conjuntos de dados e metodologias comuns para
comparar esses modelos.

Esta tese focou-se no estudo de um sistema multifatorial de previsão de quedas e no estudo
de um sistema automático de deteção de quedas baseado em sensores. O desenvolvimento de
um sistema de previsão de queda multifatorial combinou o estudo de métodos de extração de
métricas com base na instrumentação de testes de avaliação de risco de queda e no estudo de
procedimentos de fusão de dados para combinar fontes de dados, como dados clínicos, dados
reportados e dados de sensores. Para o avanço dos sistemas automáticos de deteção de quedas,
consideramos o impacto de várias variáveis no desempenho do sistema: o tipo de conjunto de
dados, composto por dados simulados ou reais, as posições corporais para acoplar o sensor e
restrições relacionadas com o hardware, como taxa de amostragem, o nível de sensibilidade do
algoritmo e a complexidade dos modelos.

Contribuímos com diferentes abordagens de fusão de dados para previsão de quedas com base
na análise de dados multimodais recolhidos de acordo com um protocolo de avaliação multifa-
torial. A instrumentação dos testes de avaliação de risco de queda com sensores inerciais e uma
plataforma de pressão permitiu discriminar melhor os indivíduos com maior risco de queda. Tam-
bém propusemos uma solução para deteção automática de quedas, com base num algoritmo de
máquina de estados de baixo custo computacional, que pode ser adaptado a diferentes níveis de
risco de queda. Estudamos o impacto do tipo de conjunto de dados, modelos de aprendizagem,
posições no corpo e taxa de amostragem no desempenho da deteção de quedas. Um novo pro-
cedimento de aprendizagem computacional conseguiu generalizar para uma nova posição, con-
siderando uma validação independente do utilizador e uma menor taxa de amostragem.

No futuro, o trabalho apresentado na área de previsão de quedas poderá ser usado como
uma ferramenta padrão de previsão multifatorial de quedas baseada em dispositivos inerciais e
de pressão, para fornecer um protocolo para avaliar o risco de queda em idosos na comunidade. O
valor adicionado pelas métricas extraídas dos sensores pode melhorar a avaliação do profissional
de saúde sobre condições físicas, como equilíbrio, mobilidade e força, além de informações pes-
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soais e contextuais. A automação dos sistemas de deteção de queda permitirá, no futuro, acelerar
a implementação de tais sistemas e acelerar o tempo de prototipagem após a seleção dos requisitos
do modelo mais adequados.

Keywords: Envelhecimento. Previsão de queda. Deteção de Quedas. Dispositivos Vestíveis.
Sensores Inerciais. Plataforma de Pressão. Processamento de Sinal. Aprendizagem Computa-
cional. Estatística. Fusão de dados multifatoriais.
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Chapter 1

Introduction

1.1 Motivation

The global population is aging (WHO, 2007) and strategies to improve and increase life ex-

pectancy are emerging. The occurrence of falls is most prevalent among 55-year-old individuals,

or older. Falls are one of the major causes of hospitalization and loss of independence in this

population (Age UK. Stop Falling, 2013). Either at home, hospitals and at daycare centers, falls

are considered an important issue, however, there is currently no standardized protocol to assess

the fall risk level of an elderly, neither in clinics and hospitals nor in community settings.

Most of the functional tests used in hospitals and clinics to evaluate the fall risk are based on

subjective and observational scales, most of them just evaluate a few fall risk factors and do not

consider the multifactorial nature of the risk of falling. Even when several tests and questionnaires

are applied, the elderly are only evaluated after the occurrence of a fall, when hospitalized. Pre-

ventive strategies should be planned and implemented in order to decrease the prevalence of falls

among the elderly. These strategies should be based on a multifactorial analysis that should be

implemented with objective scales in a daily and pervasive way. Since most of the fall risk factors

vary with time, this evaluation could be improved when assessed more frequently in order to de-

velop prevention strategies that are tailored for each person and to their abilities and daily habits

(Avin et al., 2015).

The most commonly used standard tests for fall risk assessment are normally applied individ-

ually and most of them only evaluate one type of risk factor, such as gait speed or balance. The

lack of a complete and multifactorial assessment tool could be overcome with the instrumentation

of some standard tests that could help to evaluate multiple components during the application of

traditional tests.

Fall risk assessment is essential for establishing adequate strategies for fall prevention that

could help to revert or attenuate some of the fall risk factors among elderlies. Although fall

prediction systems can contribute to preventing falls, the occurrence of falls is not only dependent

on the physical stability of the individuals but also from external perturbations such as obstacles

in the surrounding environment (Bruijn et al., 2013) or weather conditions. For this reason, the

3
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occurrence of falls is not always predictable. Therefore, it urges to be able to detect the falls at the

moment they occur.

Prompt assistance after a fall could decrease the negative effects of a fall event. Automatic fall

detection systems have been developed in the past years and rely mostly on wearable or smart-

phones with integrated inertial sensors and location capabilities that facilitate the detection and

trigger of a fall alert. However, there is still an extensive number of research studies built upon

similar methodologies but addressing particular use-cases for fall detection. These requirements

frequently motivate algorithm fine-tuning, making the modeling stage a time and effort consum-

ing process. There is a lack of automated procedures to deploy fall detection models faster and

adapted for different use-cases, and there is also the need for standard datasets and methodologies

to benchmark those models.

1.2 Objectives

The work proposed in this thesis aims to instrument several fall risk assessment tests with wear-

able sensors in order to objectively assess an individual’s risk of fall. Moreover, the thesis aims

to implement fall detection approaches that pervasively analyze the activities of the elderly and

quality of movements in order to automatically detect a fall, that could have an impact on the

elder’s the quality of life. Thereby, the main objectives for this thesis are two-fold: i) develop

a multifactorial fall risk assessment approach based on multimodal sensor data and ii) develop a

low-cost wearable-based system for automatic detection of falls.

The fall prediction and fall detection systems are illustrated in Figure 1.1 and will require two

main components: sensing and processing. For sensing personal and contextual information of

the user, the system makes use of sensing units, which could be: wearable devices, smartphones,

pressure platforms, or dynamometers. The system also uses information from questionnaires about

health and personal conditions, questionnaires about fall occurrence in a follow-up period, and

self-reported data about social behavior, home hazards, and risks. In a pervasive way, the system

sends the user’s data to a processing unit that recognizes daily activities, detects falls, and evaluates

the risk of falling. After processing the information, the system triggers a fall alarm in case of a

fall and provides a prediction of fall based on the occurrence of a fall in a follow-up period of time.

In order to accomplish these objectives, several datasets were collected or requested and further

analyzed:

• FallSensing Dataset - collected in the scope of the FallSensing project, during several data

collection trials that began in May 2015. This dataset includes data from a multifactorial

screening tool for fall-risk in community-dwelling adults aged 50 years or over (Martins

et al., 2018). The data was collected by the physiotherapists of Coimbra Health School in

community settings. The author of this thesis was involved in the definition of the protocol

as well as in the data structuring and curation.
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Figure 1.1: Fall prediction and fall detection systems overview.

• AICOS Fall Dataset - a large collection of simulated falls and non-falls acquired with

young participants since 2009, in the living lab of Fraunhofer Portugal AICOS. The author

was involved, since almost the beginning, in the definition of the data collection protocol,

conducted most of the trials for data collection and was also involved in the work related to

structuring and curation of the dataset.

• FARSEEING Real-World Dataset - from FARSEEING project with annotated real fall

events for detection of falls and monitoring of daily activities (Klenk et al., 2016). The

authors granted us access to a small dataset that includes 23 examples of real falls acquired

from elderly patients in hospital settings.

• UMAFall Dataset - a publicly available dataset that contains simulated falls and non-falls

acquired from young volunteers using wearable devices in several on-body positions (Casi-

lari et al., 2018).

1.3 Contributions

The main contributions of this thesis in the areas of falls prediction and falls detection are detailed

as follows:

• Validation that the instrumentation of fall risk assessment tests with inertial sensors and pres-

sure platform could better discriminate the individuals at higher risk of falling. The added

value of metrics derived from wearable devices has the potential to improve fall prediction

systems (Silva and Sousa, 2016; Silva et al., 2017).
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• Exploration of different data fusion approaches for fall prediction based on the analysis of

multimodal data collected according to a multifactorial screening protocol. The richness of

the collected data allowed to infer not only the functional capabilities of a person but also

clinical and environmental information (Silva et al., 2020).

• Proposal of a transfer learning approach for combining a dataset of simulated falls and non-

falls with the real-world FARSEEING dataset. The combination of simulated and real-world

data allowed us to train a set of supervised classifiers for discriminating between falls and

non-fall events (Silva et al., 2018).

• Development of a wearable solution for automatic fall detection, based on a low-power state

machine algorithm. Study of different on-body positions and sensors’ sampling rate using

an optimization algorithm. The algorithm can also be adapted to different groups of people

with different fall risk levels, by changing the algorithm’s sensitivity (Alves et al., 2019).

• Study of the impact of learning models, on-body positions and sampling rate in fall detection

performance, using a new machine learning pipeline that is able to deploy fall detection

solutions adapted to the aforementioned system requirements.

1.4 List of Publications

The work developed in the area of Multifactorial Fall Prediction resulted in the following publi-

cations:

• Joana Silva and Inês Sousa, "Instrumented Timed Up and Go: Fall Risk Assessment based

on Inertial Wearable Sensors". 11th IEEE International Symposium on Medical Measure-

ments and Applications (MeMeA) 2016

• Anabela Martins, Joana Silva, António Santos, João Madureira, Carlos Alcobia, Luís Fer-

reira, Pedro Mendes, Cláudia Tonelo, Catarina Silva, Daniela Baltazar, Inês Sousa. "Case-

Based Study of Metrics Derived from Instrumented Fall Risk Assessment Tests". 10th World

Conference of Gerontechnology 2016

• Joana Silva, João Madureira, Cláudia Tonelo, Daniela Baltazar, Catarina Silva, Anabela

Martins, Carlos Alcobia and Inês Sousa. "Comparing Machine Learning Approaches for

Fall Risk Assessment". 10th International Conference on Bio-inspired Systems and Signal

Processing (BIOSIGNALS) 2017

• Anabela Martins, Juliana Moreira, Catarina Silva, Joana Silva, Claúdia Tonelo, Daniela Bal-

tazar, Clara Rocha, Telmo Pereira and Inês Sousa, "FallSensing, a multifactorial screening

tool for fall-risk in community dwelling adults aged 50 years or over: Study protocol", JMIR

Research Protocols, vol. 7, pp. 10304, 2018
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• Joana Silva, Inês Sousa and Jaime Cardoso, "Fusion of Clinical, Self-Reported, and Mul-

tisensor Data for Predicting Falls," IEEE Journal of Biomedical and Health Informatics

(J-BHI), vol. 24, no. 1, pp. 50-56, 2020.

The following publications were a result of the work conducted in the area of Wearable-based

Fall Detection:

• Joana Silva, Inês Sousa, and Jaime Cardoso, "Transfer learning approach for fall detection

with the FARSEEING real-world dataset and simulated falls," 40th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp.

3509-3512.

• José Alves, Joana Silva, Eduardo Grifo, Carlos Resende and Inês Sousa, “Wearable Embed-

ded Intelligence for Detection of Falls Independently of on-Body Location.” MDPI Sensors

vol. 19, 11 2426. 2019.

• Joana Silva, Diana Gomes, Inês Sousa, and Jaime Cardoso, "Automated development of

custom fall detectors: position, model and rate impact in performance" IEEE Sensors Jour-

nal, vol. 20, no. 10, pp. 5465-5472, 2020.

Only the publications for which the author of this thesis has contributed as the first author will

be included in this thesis. With the exception of the publication by Alves et al. (2019), which will

be adapted to this thesis, considering only the contributions to the work made by the author of this

thesis.

1.5 Document Structure

This thesis is organized in four parts, with a total of 12 chapters, which are organized as follow:

• Part I, Introduction and Theoretical Background, includes Chapter 1, where the moti-

vation and principal contributions and publications of the thesis are described, Chapter 2,

where the fundamentals of inertial sensors are presented, since inertial sensors will be used

as sensing device for developing methods for fall prediction and detection, and 3 explains

the machine learning algorithms and data processing pipeline that will be used to process

inertial sensor data for developing fall prediction and detection classification algorithms.

• Part II, Multifactorial Fall Prediction, is organized in four chapters: Chapter 4 includes

an introduction to the topic, along with the related State-of-Art; Chapter 5 focus on the

study of feature extraction using a wearable-instrumented functional test for fall prediction;

Chapter 6 details a machine learning approach for fall prediction based on a set of functional

tests instrumented with wearable devices; and Chapter 7 culminates the topic by combining

the previous functional tests and feature extraction methods with data fusion approaches of

clinical, self-reported and multisensor data for fall prediction.



8 Introduction

• Part III, Wearable-based Fall Detection, is also organized in four chapters: Chapter 8

describes the main achievements of previous works, and explains some of the restrictions for

developing automatic fall detection models; Chapter 9 describes an approach for combining

simulated and real-world falls datasets to improve the performance of fall detection; Chapter

10 details a state-machine algorithm for fall detection, its parameters optimization and a

study of the impact of the sampling rate in the performance; and Chapter 11 describes a

framework for automating the development of fall detectors that take into account several

constraints for model optimization.

• Part IV, Conclusion, comprises Chapter 12, that finally summarizes the main conclusions

of the two parts of the thesis, along with the main contributions, and future work.



Chapter 2

Fundamentals of Inertial Sensors and
Pressure Platform

This chapter describes the fundamentals of inertial sensors and pressure platform. The focus

will be made on accelerometers, gyroscopes, and magnetometers, since these sensors are com-

monly used in applications of falls prediction and detection. An inertial measurement unit (IMU)

combines three sensors of each to produce a three-dimensional measurement of the acceleration,

angular velocity, and magnetic field, respectively. Most of the solutions commercially available

are made with Micro-Electro-Mechanical Systems (MEMS) technology. The widely spread of

MEMS sensors is due not only to its low dimension but also to its remarkable performance. There

are a large number of microsensors for most of the sensing modalities: temperature, humidity,

inertial forces, pressure, radiation, magnetic fields.

Since MEMs are produced by batch fabrication techniques, these small silicon chips can reach

high levels of functionality and reliability at a relatively low cost.

"MEMS technology is extremely diverse and fertile, both in its expected application

areas, as well as in how the devices are designed and manufactured. Already, MEMS

is revolutionizing many product categories by enabling complete systems-on-a-chip

to be realized." (MEMS and Exchange)

2.1 Accelerometer

Accelerometers are currently the leaders of commercial solutions with MEMs technology. There

are high, medium and low-grade IMUs with different accuracies and costs. Low-grade accelerom-

eters are mostly used in the automotive industry, in crash airbags and can also be used for pedes-

trian navigation and attitude and heading reference systems. High-grade IMUs are used for marine

applications in submarines and aviation navigation systems for example, because of its high per-

formance, reduced drift, but can have costs of million dollars, while low-grade sensors cost around

a dollar (Groves, 2008).

9
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The physical mechanisms of MEMS accelerometers include capacitive, piezoresistive, elec-

tromagnetic, piezoelectric, ferroelectric, optical, and tunneling (Bouchaud, 2009).

The most successful type of accelerometer is based on capacitive transduction because of its

low power consumption and good stability over temperature. Its function principle is illustrated in

Figure 2.1.

Figure 2.1: Capacitive accelerometer principle. Adapted from Groves (2008).

Accelerometers are inertial sensors because their functionality is based on the principle of in-

ertia, which states that "a body with no net force acting on it will either remain at rest or continue

to move with uniform speed in a straight line, according to its initial condition of motion" (New-

ton’s first law). In Figure 2.1 the proof mass is free to move in the accelerometer case and the

pickoff measures its position with respect to the case. When a force is applied in the sensitive

axis, the case will move with respect to the mass, compressing one spring and stretching the other.

The forces from the springs alter the force transmitted to the mass. When the acceleration of the

mass reaches the external force, the relative position of the mass (measured by the pickoff) rela-

tive to the case is proportional to the acceleration applied to the case. In opposite, the gravitational

force acts directly on the mass and there is any relative movement of the mass in relation to the

case. Accelerometers measure both static (gravity) and dynamic (movement) acceleration, there-

fore an accelerometer in equilibrium will measure the Earth’s gravitational acceleration, which is

approximately 9.81 m/s2 (Groves, 2008).

In 2006, the top 5 accelerometer suppliers, Freescale, Analog Devices, Bosch, VTI and Denso,

almost only provided sensors for the automotive market. However, nowadays, these inertial sen-

sors can be found on regular smartphones, digital audio players, personal digital assistants, game

controllers, mobile PCs, and camcorders.

The incorporation of IMUs in smartphones has been used for orientation view adjustment,

pedestrian navigation, movement sensing, gaming controllers and pedometer applications. For

most sensors, the coordinate system is defined relative to the device’s screen when the device is

held in a default orientation, as depicted in Figure 2.2.

This sensor is almost 10 times less consuming than other inertial sensors, however, the ac-

celeration should be filtered to remove noise and also the gravitational component, for movement

analysis. The output unit is in m/s2.
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Figure 2.2: Coordinate system relative to the device.

2.2 Gyroscope

There are three main types of a gyroscope: mechanical, optical, and vibratory. Vibratory gyro-

scopes take advantage of the Coriolis effect to measure the angular velocity. When a mass m

rotates with an angular velocity Ω, a force F is applied to the mass, that moves with velocity v, ac-

cording to Figure 2.3. The sensor’s principle is to detect the Coriolis acceleration of the vibrating

element when the gyroscope is rotated. The Coriolis effect causes the object to exert a force on

its support and the rate of the rotation is determined by this force, as in Figure 2.3. The Coriolis

acceleration is perpendicular both to the direction of the velocity of the moving mass and to the

frame’s rotation axis. The physical displacement is read with a capacitive sensing interface and

the output unit is radian/second.

Figure 2.3: Coriolis effect illustration. Adapted from Vigna et al. (2010)

There are several conventions to represent the rotation angles around the three axes. The

most commonly used are the Euler angles and the Tait–Bryan angles. The latter are also called
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pitch, roll, and yaw and are defined as the rotation around X, Y and Z axis, respectively, and are

represented in Figure 2.4.

MEMS gyroscopes have known limitations, such as the output drift over time, output off-

set when stationary and limited sensitivity. According to the application, the gyroscope can be

combined with an accelerometer to compensate for the output drift.

Figure 2.4: Magnetometer azimuth calculation. It is also illustrated the pitch and roll angles,
around axis x and y, respectively.

2.3 Magnetometer

Magnetometers are sensors that measure the strength and/or direction of the magnetic field in a

point at the space, based on the Hall effect. These sensors are used for measuring the Earth’s

magnetic field, to detect magnetic anomalies of various types, searching for mineral deposits or

locating lost objects and also in the military to detect submarines.

Figure 2.5: Forces that are applied to the electrons in the presence of Hall effect on a conductor.
Adapted from hal (2013).
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When a magnetic field with a perpendicular component is applied to a conductor, the charges

that constitute the current of the conductor (electrons, holes, and ions) experience the Lorentz

force, that accumulates charges on one face of the material. The force creates a difference potential

between the sides of the conductor, as in Figure 2.5.

Most of the actual smartphones have built-in magnetometers, that allow measuring the Earth’s

magnetic field strength. This sensor provides raw field strength data (in micro Tesla) for each

of the three coordinate axes and they are commonly used as an electronic compass. The sensor

determines the azimuth component of the device orientation, according to Figure 2.4.

The output of the sensor can be influenced by the location on the planet, the weather or season

of the year and also nearby electromagnetic devices such as magnets, electric coils or objects with

ferrite elements.

2.4 Pressure Platform

The plantar pressure distribution data can be measured with PhysioSensing platform (Sensing Fu-

ture Technologies, Lda)1. PhysioSensing is a portable balance and pressure platform with visual

biofeedback technology. PhysioSensing allows to evaluate clinical practice and make it objective

and quantified in a clinical report. PhysioSensing is indicated for balance, biofeedback, rehabili-

tation, physical, vestibular. It is a CE Medical Device Class I.

It contains 1600 pressure sensors of size 10mm by 10mm with a maximum value of 100N/sen-

sor. Voltage data is converted with an 8-bit A/D converter and is transmitted via USB (Universal

Serial Bus). In this way, it is possible to receive raw data of each pressure sensor as well as the

raw center of pressure coordinates (CoP), in cm. The main specifications of the pressure platform

are detailed below:

• Size: 61 x 58 cm

• Thickness: 1 cm

• Weight: 4 kg

• Active surface: 40 x 40 cm

• Number of sensors: 1600

• Sensor size: 1 x 1 cm

• Sensor type: Resistive

• Sensor thickness: 4 mm

• Sensor life time: more than 1 000 000 actuations
1https://www.physiosensing.net/
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• Maximum pressure (each sensor): 100 N/cm2

• Temperature range: from 0oC to 60oC

• Frequency: 100 Hz, 100 acquisitions/second

• Data transmission: via USB (Universal Serial Bus)

• 8-bit A / D conversion

• Power: via USB cable

• Output: Raw data of each pressure sensor (8 bits) and coordinates of pressure center (x, y)

The pressure values are obtained through an 8-bit Analog Digital converter (A / D converter),

that is, values from 0 to 255. Pressure values can be visualized through a conversion to color,

where red represents 255 and white represents 0, as in Figure 2.6. These values can be converted

into kg knowing the user’s weight.

In order to obtain more precision in CoP displacements, an algorithm was employed to obtain

CoP positions in mm, using the matrix of pressure sensors (Hsi, 2016).

Figure 2.6: Data display of the pressure platform matrix, and the pressure center in gray.

2.5 Summary

The IMUs integrate a suite of three sensors: accelerometer, gyroscope, and magnetometer. The

low cost, low dimension and remarkable performance of these sensors enabled their utilization in

most of the wearable devices we carry every day. We can find these sensors integrated into nowa-

days smartphones, smartwatches, personal assistants, mobile PCs, and smart home devices. New
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research areas, in which these sensing devices are applied, are emerging, such as fall detection,

fall risk assessment and physical activity monitoring. The use of these sensors in personal com-

panion solutions for the elderly allows to pervasively monitor the eventual occurrence of falls and

to provide insights into the elderly movement patterns during the execution of specific activities.

The most used sensor for movement analysis is the accelerometer, which provides an estimate in

three axes of the acceleration of the user when the sensor is carried closer to the body. However,

different body segments have different movement signatures, and most of the solutions based on

inertial sensors have restrictions on the place to use the wearable device. The accelerometer signal

requires further processing and filtering to be used for movement analysis, as it will be explained

in the next sections. Combing movement data with plantar pressure data can allow us to obtain

more information about the balance of a person, and at the same time to give visual feedback in

order to correct unbalanced foot positions during the exercises. This way, this thesis will study the

viability of using these inertial sensors and pressure platform, combined with signal processing

and machine learning techniques, for developing fall detection and fall prediction solutions for the

elderly population.
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Chapter 3

Fundamentals of Machine Learning

Adapted from J. Silva, C. Figueira, M. Barandas, J. Gonçalves, J. Costa, L. Rosado, M. Vascon-

celos, F. Soares, and H. Gamboa. "White Paper about Machine Learning @ Fraunhofer Portugal

AICOS" (2017)1

3.1 Overview

In Artificial Intelligence, Machine Learning (ML) can be defined as a technology to learn au-

tonomously from training data. It is a branch of computer science concerned with induction prob-

lems where an underlying model for predictive or descriptive purposes has to be discovered, based

on known properties learned from a training set. Machine Learning algorithms can be divided into

different categories, depending on the nature of the learning process:

• Supervised learning uses labeled data (data inputs and their desired outputs) to train an

algorithm, which becomes able to map new inputs (Wilde, 2010). The supervised learn-

ing problems can be divided into Classification or Regression problems. In classification

problems, the output to predict is discrete, whereas in regression problems the output is

continuous;

• Unsupervised learning uses unlabelled data to build recognition models. Generally, the

main objective is to identify and organize a dataset into different clusters through their sim-

ilarity, providing significant information from the original dataset (Wilde, 2010; Ghahra-

mani, 2004);

• Semi-supervised learning uses unlabelled data together with labeled data, i.e., in the learn-

ing process the training dataset is composed by, typically, a small amount of labeled data

and a large amount of unlabelled data, falling between unsupervised learning and supervised

learning (Witten and Frank, 2005).

1https://www.aicos.fraunhofer.pt/en/news_and_events_aicos/news_archive/older_archive/Machine_Learning_at_
Fraunhofer_Portugal_AICOS.html
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• Deep Learning has also been a big trend in Machine Learning. It is composed of several

Artificial Neural Networks (ANN) processing layers. ANN are inspired by the structure and

functions of the biological neurons. An artificial neuron has a finite number of inputs with

the respectively associated weights and an activation function. Through the application of

the activation function to the weighted sum of inputs, the output is obtained. An ANN is the

result of the connection of many artificial neurons (Dayhoff and DeLeo, 2001; Moujahid,

2017).

Figure 3.1: Traditional Machine Learning (above) and Deep Learning (below) flow.

Figure 3.1 illustrates that the main difference between traditional Machine Learning and Deep

Learning algorithms lies in feature engineering. Traditional Machine Learning algorithms involves

a feature extraction process, in order to provide relevant information that will have an essential role

in the classification process (Figure 3.1 – above). On the other hand, Deep Learning algorithms

perform feature engineering in an automatic way (Figure 3.1 – below) (Moujahid, 2017).

As represented in the figure above, a Machine Learning pipeline starts with a collection of

data (the Sample). Afterward, a Feature Extraction process is performed, which consists of trans-

forming a large quantity of data into a set of values, providing relevant information that will have

an essential role in the classification process. A perfect feature type has a wide variation between

different classes and a small one between the same class data (Øivind Due Trier et al., 1996). After

features extraction, the next step is to apply Machine Learning techniques in order to construct a

classification algorithm.

After the development of a classification algorithm, there are several different ways to evaluate

its performance. First of all, it is necessary to have in mind the possible problem of overfitting. If

we train and test the classifier with the same data, this situation may occur. The model constructed

would just repeat the labels of the samples that it has just seen and exaggerated in minor fluctu-

ations of data, leading to a perfect score. But testing the classifier with unseen data, the results

would show poor predictive performance. A simple way to avoid it is using, for instance, a k-fold

Cross-Validation (CV) method (Pedregosa et al., 2011). K-fold Cross-Validation divides randomly

the original sample into k equal sized subsamples. From the k subsample, it is considered a single

subsample as the validation set for testing the model, and the remaining k subsamples are used as

the training set. This process is then repeated k times, where each of the k subsamples are used

exactly once as the validation set. The k results obtained for each fold can then be averaged to pro-

duce a single estimation. When k is equal to the number of subjects, the K-fold Cross-Validation
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becomes the Leave-One-Subject-Out (LOSO) Cross Validation, where each learning set is created

by taking all the samples except the ones from one subject, and the test set is composed by the

samples of the subject left out. In this case, for n subjects, there are n different training sets and

n different test sets. Typically, this kind of validation is used when there are multiple samples per

subject and we want to avoid subject bias, i.e., the model can learn features specific of each subject

and it can fail to generalize to new subjects (Pedregosa et al., 2011; Kohavi, 1995).

Nested cross-validation applies a k-fold split between train and test and repeat it several times.

It was first proposed by Dietterich (1998) as a way to obtain not only an estimate of the general-

ization error but also an estimate of the variance of that error, in order to perform statistical tests.

Nested CV is not relevant if the dataset is large and without outliers, but if data have outliers than

CV performance may be different depending on what folds the outliers are.

After the validation process, there are several metrics to evaluate classifier performance. One

of the most used is the accuracy. Accuracy measures how close a value is to its true value (Eq. 3.1).

Usually, we also report sensitivity (or recall), precision and specificity of the model. Sensitivity

represents the ability of a model to correctly identify the positive class (true positive rate) (Eq.

3.2), whereas specificity is the ability of the model to correctly identify the negative class (true

negative rate) (Eq. 3.3). Precision (positive predictive value) is the fraction of instances classified

as positive class that were actually positive instances (Eq. 3.4). For binary classification, it is com-

mon to report F1-score (F-score or F-measure) and Youden’s J statistic (J index). F1-score is the

harmonic mean of precision and recall and it is used as a single measure of the test’s performance

for the positive class (Eq. 3.5). The J index combines sensitivity and specificity in a single statistic

that captures the performance of a binary test (Eq. 3.6), as well as the geometric mean, which is

the squared root of the product of the sensitivity and specificity (G) (Eq. 3.7).

Acc =
T P+T N

T P+T N +FP+FN
(3.1)

Se =
T P

T P+FN
(3.2)

Sp =
T N

T N +FP
(3.3)

Prec =
T P

T P+FP
(3.4)

F1 =
2×Prec+Se

Prec+Se
(3.5)

Y I = Sp+Se−1 (3.6)

G =
√

Sp×Se (3.7)
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Where TP are the True Positives, TN the True Negatives, FP the False Positives and FN the

False Negatives.

3.2 Performance evaluation of binary predictors

The Receiver Operating Characteristic curve (ROC) and Total Operating Characteristic curve

(TOC) are used to visualize a binary classifier performance for all possible threshold choices in

a single graph. However, these are based on two different coordinate systems. A ROC curve is

plotted into an FPR vs. TPR coordinate system, for all threshold values between 0% and 100%. A

TOC curve, is plotted into a (TP+FP) vs. TP coordinate system, for each threshold value.

Each point on a ROC curve determines the corresponding confusion matrix if the total number

of positive and negative samples are known. However, the ROC graph does not contain the total

test set composition as visual information. The ROC curve has long been used, but this shortcom-

ing has recently been addressed by the introduction of the TOC curve by Pontius and Si (2014).

A TOC curve displays the full ROC information and additionally allows to visualize the total in-

formation, i.e., the test set’s composition and all the four entries of the confusion matrix, for each

point on the curve.

• Receiver Operating Characteristic curve (ROC) is a graphical plot of the diagnostic abil-

ity of a binary classifier system at all classification thresholds. The ROC curve is composed

by plotting in the y-axis the true positive rate (TPR) against the false positive rate (FPR), in

the x-axis, at various threshold settings, as can be seen in Figure 3.2 (left graph). The true-

positive rate is also known as sensitivity, recall or probability of detection. The false-positive

rate is also known as probability of false alarm and can be calculated as (1 - specificity). The

points in the upper left of the ROC curve are the good ones, since these present higher sen-

sitivity and higher specificity. Any point on the diagonal line represents a classifier that is

guessing randomly. The Area under ROC curve (AUC) can be interpreted as an estimate of

the probability that the classifier will give a random positive instance a higher score than a

random negative instance.

• Total Operating Characteristic Curve (TOC) shows the total information in the confusion

matrix for each threshold. TOC maintains desirable properties of ROC, while revealing

more information than ROC. To analyze the results obtained for each threshold, these can

be plotted in a TOC graph. In order to generate this curve, the hits, true positives (y-axis), are

plotted against the hits plus the false positives, this is, against the total of positive predictions

(x-axis) (Pontius and Si, 2014). Therefore, this curve allows better visualization of the

balance between false positives and the number of true positives, as illustrated in Figure 3.2

(right graph).
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Figure 3.2: Receiver Operating Characteristic curve (ROC) (Left) and Total Operating Character-
istic Curve (TOC) (Right).

3.3 Learning Methods

The choice of the algorithm depends on the type of dataset available and the objectives of the

research. In Machine Learning, several algorithms are used in different contexts and applications,

which will be now described.

• K-Nearest Neighbours (k-NN) find the k closest instances of the training set according to

a metric measure, where the resulting class is the most frequent class label of the k nearest

instances Kotsiantis (2007);

• Decision Tree (DT) creates a model that classifies instances by sorting them based on data

features values. The major goal is to determine the best decisions (Kotsiantis, 2007);

• Naïve Bayes (NB) predicts class membership probabilities, based on the Bayes Theorem.

Independence between the features and prior probabilities are assumed. Based on previous

experience, these probabilities are then used to predict outcomes before they actually happen

(nai, 2017);

• Support Vector Machine (SVM) is a binary classifier that builds a model that assigns new

data into one category or other from a set of training examples. The main objective is to find

the maximum hyperplane which separates the data classes (Kotsiantis, 2007);

• SVM classifiers require the solution of high quadratic programming (QP) optimization prob-

lem. Based on it, a new algorithm to train SVM was created, the Sequential Minimal Op-
timization (SMO). With SMO, the QP problem is solved by being divided into the smallest

QP problems, which are then solved analytically (Platt, 1998);

• Markov Models are based in probabilities and are used in cases where certain conditions

may happen repeatedly over time or for modeling predictable events that take place over

time. Hidden Markov Models (HMM) is a special case of Markov Models. In this case, the
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Markov process shows unobserved (i.e. hidden) states and there is no knowledge regarding

the existing states and transition probabilities between them (Fosler-Lussier, 1998);

• Adaboost is a boosting algorithm, i.e., an algorithm based on the combination of weak and

inaccurate rules in order to construct a prediction rule (Schapire, 2013);

• Spectral Clustering uses the main eigenvectors of the similarity matrix resulted from points

distance. With this, data dimension is reduced into fewer dimensions (Ng et al., 2002);

• Convolutional Neural Networks (CNN) are a type of neural network where the input is an

image and the fully connected layers are replaced by layers of convolutional filters. The use

of convolutional filters instead of fully connected layers, with neurons connected to every

neuron in the previous layer, allows to significantly decrease the number of parameters of

the network, thus enabling the network to efficiently learn features in relatively large images.

The goal of the training phase is to learn the weights in those convolutional filters, in order

to minimize a given loss function;

• Recurrent Neural Networks (RNN) are popular models which, unlike traditional ANN,

consider that inputs and outputs are dependent on each other. Long Short-Term Memory

(LSTM) networks are a type of RNN, which are capable of learning long-term dependencies

(Sak et al., 2014).

3.4 Imbalance Learning

• Synthetic Minority Over-sampling Technique: (SMOTE) (Bowyer et al., 2011) was used

to oversample real-world samples in the train set. Using this approach, the minority class

is oversampled by creating “synthetic” examples rather than by oversampling with replace-

ment. SMOTE works by selecting examples that are close in the feature space, drawing a

line between the examples in the feature space and drawing a new sample at a point along

that line. A variation of SMOTE called SMOTE-NC (Nominal and Continuous) allows to

use both continuous and nominal data.

• Balance Cascade: creates an ensemble of balanced sets by iteratively undersample the

imbalanced dataset using an estimator (Liu et al., 2009). This method iteratively select

subset and make an ensemble of the different sets. The selection is performed using a

specific classifier. SMOTE and Balance Cascade are implemented in Python’s imbalanced-

learn (v.0.2.1) package (Lemaître et al., 2017).

• Ranking Models: are used for tackling class imbalance with ranking, using an application

of learning pairwise rankers. Several models can be used with this approach, such as Ad-

aboost, Balanced linear SVC, Linear SVC, Rankboost and Rank SVM (Cruz et al., 2016).
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3.5 Statistical Analysis

• Fisher Exact Test is statistical test used to determine if there are nonrandom associations

between two categorical variables, when the sample sizes are small. Fisher’s exact test

returns a test decision for the null hypothesis that there are no nonrandom associations be-

tween the two categorical variables, against the alternative that there is a nonrandom asso-

ciation. The result is 1 if the test rejects the null hypothesis at the 5% significance level, or

0 otherwise.

• Odds Ratio (OR) is a measure of association between an exposure and an outcome. The OR

represents the odds that an outcome will occur given a particular exposure, compared to the

odds of the outcome occurring in the absence of that exposure Szumilas (2010). If the OR is

greater than 1, then the exposure and the outcome are associated (correlated). Conversely, if

the OR is less than 1, then the exposure and the outcome are negatively correlated, and the

presence of one event reduces the odds of the other event.

• Analysis of variance (ANOVA) is a statistical comparison analysis test that analyses the

means between groups and determines if any of those means are statistically significantly

different from each other. ANOVA provides a statistical test of whether two or more groups’

means are equal, and therefore generalizes the t-test beyond two means. ANOVA allows to

know if the differences are significant or not, but does not allow to know between which

pairs the differences are significant.

• Tukey’s Honest Significant Difference Test (HSDT) is a post-hoc test that allows to inter-

pret the statistical significance of ANOVA test and find out which specific groups’ means

(compared with each other) are different. After performing each round of ANOVA, one

should use a Tukey Test, with 95% confidence level, to all possible pairs to find out where

the statistical significance is occurring in the data.

• p-value is a measure of the probability that an observed difference could have occurred

just by random chance. The lower the p-value, the greater the statistical significance of

the observed difference. For a confidence level of 5%, a p-value < 0.05 indicates a statis-

tically significant difference between groups, and a p-value > 0.05 indicates there is not a

statistically significant difference between groups.

3.6 Machine learning pipeline

The Cross Industry Standard Process for Data Mining (CRISP-DM) described by Wirth and Hipp

(2000) proposed a standard process model for carrying out data mining projects. The CRISP-DM

process model is useful for planning, communication within and outside the project team, and

documentation. The main steps of the data mining life cycle are presented in Figure 3.3.

Based on CRISP-DM, one can define a machine learning pipeline which considers not only the

modeling phase, with the tuning of a learning algorithm, but all the steps for data preprocessing
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and feature engineering that precedes the model inference step. Most of the time, the prediction

algorithm is the easier part to deploy, but the other steps of the pipeline could be more difficult to

integrate into other platforms (e.g. sensor fusion algorithms, feature extraction algorithms). When

we use deep learning models, the feature extraction and selection steps are usually not needed, and

we focus only on the preprocessing steps and the neural network implementation. We will explain

following the main tasks underlying each step of the ML pipeline:

• Domain understanding Discuss with domain experts their needs for using machine learn-

ing, formulate the problem task, the variables that need to be collected, how the data will be

collected and structured. Discuss the specifications of the data and the problem.

• Data collection and annotation Define data requirements, structure, loggers and annotation

procedures, as well as sample size needed. Consider ethical, fairness, bias and privacy

issues.

• Data verification

– Data cleaning: imputation of missing values, removal of duplicate samples, data veri-

fication procedures for detection of acquisition errors

– Unbalanced data: evaluate the need for data over/undersampling or augmentation.

– Oversampling: should only be applied in the training set, the validation set should

have the same unbalance nature as the test set.

– Sampling techniques: uniformize each window/segment – for example, ensure that

each sample has the same sampling rate, i.e. the same number of points

• Data partitioning Divide the entire dataset into 3 partitions to be used for train, validation,

and test, respectively. The train and validation sets constitute normally 2/3 of the dataset

and the test set comprises the other 1/3 of data.

• Data segmentation Split each data sample into small windows/segments for analysis, if

applicable.

• Feature extraction (if not deep learning) Use libraries or define algorithms for feature ex-

traction that are applied for each window/segment. The output will be a feature vector. The

rows correspond to each instance, i.e. window/segment, and the columns correspond to each

feature value.

• Feature selection and normalization (if not deep learning) Remove correlated features

or useless features with specific algorithms, such as forward feature selection. Normalize

features in the train set and apply the same normalization parameters to the test set. The

output will be a feature vector with only the selected features and a set of parameters for

feature normalization of the test set.

• Models’ hyperparameters tuning
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– Define a cross-validation procedure, either by K-fold Cross-Validation or Leave-One-

Subject-Out Cross-Validation

– Define routines or use toolboxes for models’ hyperparameters optimization.

– Define the models to be tested and each parameter’s range to be considered.

– Define a performance metric for retrieving the best models.

– Define requirements for model deployment if needed at this stage.

– The output will be the best model’s hyperparameters and the model implementation

(if it is deep learning, the architecture of the network).

• Model performance evaluation Using the test set, report the performance metrics for this

dataset partition. Consider informative metrics for the problem task at hand. Be careful with

unbalanced data when reporting the model’s performance.

• Model deployment Implement the same data verification, segmentation, feature extraction

and selection, feature normalization and models in the deployment platform. Use this model

to infer for new samples.



26 Fundamentals of Machine Learning

Figure
3.3:D

ata
m

ining
life

cycle,adapted
from

L
eaper(2009).



3.7 Fall prediction and detection pipeline 27

3.7 Fall prediction and detection pipeline

The research problems related to Signal Processing, such as fall prediction or detection, use time

series collected from inertial and environmental sensors, which are embedded in smartphones

or wearable sensors. Currently, the methodology for collecting samples from inertial sensors

uses a recording tool to acquire samples of movements or activities that we want to analyze.

The data can be collected from smartphones and wearable platforms, which contain an inertial

measurement unit with an accelerometer, gyroscope, magnetometer and barometer sensors. After

data acquisition, the processing pipeline follows the data verification, feature extraction, modeling

and deployment of the best performing model. In the next sections, it will be explained in detail

the ML pipelines used for each classification problem. For fall prediction, we want to discriminate

between fallers and non-fallers based on multifactorial data and the prospective 1-year number

of fall occurrences. For fall detection, we want to discriminate between events of fall and other

non-fall movements based on annotated samples of movements collected for each type of event.
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Chapter 4

Introduction

4.1 The problematic of falls

The worldwide population aged over 65 is growing rapidly. The consequences of this phenomenon

are not only social and health-related but also economic. The process of aging affects the ability

of a person to maintain balance, mobility, and muscle strength and to react properly to unexpected

situations such as slipping or stumbling. There are also cross-related factors resulting from health

conditions, including loss of auditory and visual capabilities, side effects of medications, dizziness,

body pain, depression, and slow walking speed. Aside from these intrinsic risk factors, falls among

older people are also associated with extrinsic factors, such as environmental hazards, footwear

malfunctioning, improper use of assistive devices, and recent hospitalizations (Ambrose et al.,

2013).

Falls are described as a complex phenomenon caused by the interaction of multiple risk factors.

To assess the risk of falling, it is necessary to identify the factors that increase an older person’s

risk of falling. Intensive research has been conducted in order to identify specific risk factors

(Ambrose et al., 2013; Rubenstein, 2006; Oliver et al., 2004), which can increase the likelihood

of a fall occurrence. The idea behind these studies is to develop preventive strategies based on the

identified risk factors.

Given a wide range of factors contributing to falls in the context of an aging population, it

becomes extremely important to frame strategies that properly evaluate the risk factors of falls in

older people. Several scales, questionnaires, functional tests, and protocols have been proposed in

the past years to overcome the lack of standardized clinical and medical procedures for assessing

the risk of falls (Howcroft et al., 2013). However, in the majority of public sectors, risk factors of

falls among the elderly are only assessed after the occurrence of a fall leading to hospitalization

or the need for other forms of medical care. When a fall risk assessment is conducted after an

occurrence of a fall, the collected parameters are altered as a consequence. On the other hand, the

majority of the proposed assessment scales and questionnaires are subjective and self-reported and

do not consider all major fall risk factors. Proper methods for the objective assessment of individ-

ual gait, strength, and balance are confined to laboratory settings requiring specialized personnel
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and equipment, thus leading to higher costs. All these solutions rely on on-time assessments that

do not reflect the variation of risk factors over time.

Fall risk assessment (also referred to as fall prediction) methods have been studied aiming to

estimate the risk of falling in order to identify those at higher risk and timely apply the appropriate

actions to prevent falls. This kind of assessment can take the form of questionnaires, simple

screenings or more comprehensive multidimensional fall risk assessments.

4.2 Fall risk factors

The majority of falls can be attributed to a physiologic cause, 78% of falls are labeled anticipated

(i.e., physiological falls that can be predicted in patients exhibiting clinical signs that contribute

to increased falls risk), and 8% labeled unanticipated (i.e., physiological falls that cannot be pre-

dicted before their first occurrence). The remaining 14% of falls are labeled accidental (i.e., often

attributed to environmental causes) (Feil and Gardner, 2012).

Most of the anticipated falls could be predicted and the associated fall risk factors are re-

versible. Commonly referred to as main causes and risk factors for falls include muscle weak-

ness, gait and balance problems, visual impairment, cognitive impairment, depression, functional

decline, and particular medications (especially in the presence of environmental hazards) as de-

scribed by Rubenstein and Josephson (2002) in Table 4.1. The authors surveyed 16 studies and

compared common risk factors among fallers and non-fallers. Muscle weakness was identified as

a significant risk factor, that increases the odds of falling over 4.4-fold in average. This factor is

followed by the history of falls, gait and balance deficit that increase the odds of falling by 3.0-fold

on average.

Table 4.1: Most common risk factors for falls, adapted from (Rubenstein and Josephson, 2002).

Risk factor Mean Relative Risk Ratio Range
Muscle weakness 4.4 1.5–10.3
History of falls 3 1.7–7.0

Gait deficit 2.9 1.3–5.6
Balance deficit 2.9 1.6–5.4

Use assistive device 2.6 1.2–4.6
Visual deficit 2.5 1.6–3.5

Arthritis 2.4 1.9–2.9
Impaired activities of daily living 2.3 1.5–3.1

Depression 2.2 1.7–2.5
Cognitive impairment 1.8 1.0–2.3

Age >80 years 1.7 1.1–2.5
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4.3 Assessment methodologies

Revised American Geriatrics Society (AGS) guidelines specify for individuals above 65 years of

age an annual fall risk screening and assessment that should evaluate fall history, balance, and

gait assessment, with a complete multifactorial fall risk assessment performed by a specialized

clinician when the subjects have positive balance or gait disabilities (DePasquale, 2014).

Most of the fall risk assessment tests evaluated whether the instrument or test can accurately

differentiate fallers from non-fallers (Hempel et al., 2012).

Fall risk assessment is a vast research area with widely disparate approaches being used. There

are various scoring systems intended for use in hospitals, nursing homes or outpatient settings. The

available indices are designed to be used by different professionals (e.g., geriatric doctors, nurses

or physical therapists) and are based on questionnaires, observations, physical examinations or

their combination (Shany et al., 2012).

The fall risk assessment aims to determine an older person’s risk of falling in order to plan

coordinated fall prevention strategies and long-term follow up. The assessment is sometimes per-

formed in specialized settings like a fall clinic and includes methods that are specifically designed

and tested for the risk of falling (e.g. gait speed, static balance, strength, dual-task measures,

cardio-vascular diagnosis, etc) (Becker and Lamb, 2007).

A systematic review of multifactorial and functional mobility assessment tools for fall risk

(Scott et al., 2007) compares several studies for community settings.

4.3.1 Questionnaires

Some of the widely used questionnaires to assess a variety of fall risk factors are listed below. The

first questionnaire is one of the most used questionnaires to assess fear of falling in daily activities,

and the other two questionnaires are mostly used in hospital settings, and the last one is a recent

web-based questionnaire to assess fall risk:

• Falls Efficacy Scale (FES) – Initially proposed by Tinetti, and later adapted to several lan-

guages, it is a 10 items questionnaire that is scored on a scale of 0 to 10. The higher the

score the greater the fear of falling (Tinetti et al., 1990).

• St. Thomas’ Risk Assessment Tool (STRATIFY) – This tool can be used to identify risk

factors for falls in hospitalized patients. The total score may be used to predict future falls,

but it is more important to identify risk factors using the scale and then plan care to address

those risk factors. It evaluates the history of falls, vision, transfer and mobility capabilities.

0 = Low, 1 = Moderate, >2 = High Risk (Agency for Healthcare Research and Quality,

2013).

• Morse Fall Scale – The Morse Fall Scale (MFS) is a rapid and simple method of assessing a

patient’s likelihood of falling. Evaluate history of falling, secondary diagnosis, ambulatory



34 Introduction

aid, intravenous therapy/heparin lock, gait, and mental status. Sample risk level is catego-

rized into three levels: no risk (0-24), low (24-44) and high risk (>45). Maximum score is

125 points (Schwendimann et al., 2006).

• Fall Risk Assessment Tool for Community-Dwelling Older People (FRAT-up) – This is

a web-based fall risk assessment tool for elderly people living in the community. This fall

prediction tool is based on a meta-analysis of fall risk factors. Based on the fall risk factor

profile, this tool calculates the individual risk of falling over the next year (Cattelani et al.,

2015).

Other questionnaires commonly used are Fall Risk assessment and Screening Tool (FRAST);

Modified Falls Efficacy Scale, (mFES), Modified Gait Efficacy Scale (mGES), Activities-specific

Balance Confidence short version (ABC-6), Fear of Falling Avoidance Behavior Questionnaire

(FFABQ), Survey of Activities and Fear of Falling in the Elderly (SAFE), Physical Functioning

Scale of the Short-Form (SF).

4.3.2 Functional Tests

There are several functional tests used for fall risk assessment, most of them use observational

scales, manual counting, timing metrics, and few of them use objective and automatic scaling

processes. The functional more used in previous studies are described below:

• Physiological Profile Approach (PPA) – Considers gait, balance, vision, proprioception

and vibration sense and strength, but omits assessments of medication, medical condition or

home hazards. PPA tests produces a gold standard fall risk score that categorizes subjects

from very low risk (-5), up to marked risk (5) (Redmond et al., 2010).

• Tinetti Performance Oriented Mobility Assessment Tool (POMA) – The Tinetti Assess-

ment Tool is a simple, easily administered test that measures a patient’s gait and balance.

The balance component has 13 maneuvers such as sitting balance, sit to stand, immediate

standing balance (first 3–5 seconds), standing balance, balance with eyes closed, turning

360o, nudging the sternum, turning the neck, unilateral stance, extending the back, bend-

ing down and picking up an object, and sitting down. The gait analysis consists of the 9

components of initiation of gait, step height and length, step symmetry and continuity, path

deviation, trunk stability, walking stance, and turning while walking (Faber et al., 2006).

The maximum score for the gait component is 12 points. The maximum score for the bal-

ance component is 16 points. The maximum total score is 28 points. In general, patients

who score below 19 are at high risk for falls. Patients who score in the range of 19-24 indi-

cate that the patient has a risk for falls. Scores between 25 and 28 are associated with low

fall risk (Faber et al., 2006).

• Berg Balance Scale (BBS) – evaluates individual’s balance capabilities in sitting, standing,

transfers, stand with eyes open and eyes closed, reaching forward with an outstretched arm,
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retrieving object from floor, turning to look behind, turning 360o, placing alternate foot on

a stool, standing with one foot in front and standing on one foot. Each task is rated on a

four-level scale (0 = lowest level of function 4 = highest level of function) and the final

score is cumulative of all task scores. The maximum score is 56 and a score of less than 45

is indicative of balance impairment (Newton, 1997).

• Timed Up and Go Test (TUG) at normal pace – the subject is asked to start seated on a

chair and when test starts, the person should stand up, walk straight for 3 meters, turn around

and walk back to the chair and sit down. The final score of this test corresponds to the time

needed to perform the TUG test. Scores higher than 14 seconds are considered associated

with high fall risk. Some studies reported a variation of TUG at a fast pace, the subjects are

asked to perform it as fast as they can. No normative values were found, however, a mean

score of 9.85 ± 1.44 seconds was obtained by 120 healthy older adults between the ages

60-87 (Hofheinz and Schusterschitz, 2010).

• 10-meters walking speed test – the subject is instructed to walk at his/her fastest walking

speed. It requires a 20m straight path, with 5m for acceleration, 10m for steady-state walk-

ing, and 5m for deceleration. Markers are placed at the 5m and 15m positions along the path

and the time to traverse is registered. The range for normal walking speed is between 1.2

and 1.4 m/s. Normative values are: < 0.4m/s indicate a probability of needing marching help

at home; 0.4 to 0.8 m/s is correlated to limited mobility; 0.8 to 1.25 m/s indicate subjects

wander in community with some risks (Fritz and Lusardi, 2009).

• Four-Stage Balance Test – the subject is instructed to stand in four balance positions: stand

with feet together, semi-tandem stand with the instep of one foot so it is touching the big

toe of the other foot, tandem stand with one foot in front of the other, heel touching toe and

one leg stand. Each position should be maintained for 10 seconds without moving the feet

or needing support. Scoring is binary, as able or not able (Murphy et al., 2003).

• Romberg (R) & Sharpened Romberg (SR) - the subject is instructed to perform two bal-

ance positions with eyes open and with eyes closed: feet together, firm surface and com-

pliant surface (i.e. foam) and feet heel-to-toe (dominant foot behind non-dominant foot)

(Agrawa et al., 2011).

• 30s Sit-to-Stand – maximum sit and stand transfers for 30 seconds. The cut-off for risk level

is divided by age and gender. For example, for a female with 65 years old, the threshold is

15 repetitions (Rikli and Jones, 2013).

• Step Test - was designed to assess dynamic standing balance and reproduce lower extremity

motor control and coordination. To perform the test, the person is asked to step on and off

a block (7.5 cm height, 55 cm width, and 35 cm depth) placed against a wall as many times

as possible for 15 seconds. The total number of completed steps in 15 seconds is recorded.



36 Introduction

This test is performed only for the dominant side, as indicated by the person being tested.

A performance of <10 steps indicates a higher risk of falling (Hill, 1996).

• Alternate-Step Test (AST) is a modified version of the stool stepping task in a BBS eval-

uation. It evaluates the participant’s weight-shifting ability in the forward and upward di-

rections. The participant is instructed to place the entire left and right foot alternately on

the step as fast as possible, 8 times for each foot. Each successful step involved placing the

entire foot on the step and returning it to the floor. The time required for completing a total

of 8 steps is measured using a stopwatch (Chung et al., 2014).

• Grip Strength – evaluates the maximum voluntary force of manual grip. The grip strength

relates to the lower limb strength and with the individual’s functional capacity. The grip

strength is measured with a dynamometer and measured in kilograms (Pizzigalli et al.,

2016).

4.4 Wearable approaches for fall prediction

Recently, solutions for the fall risk assessment based on low-cost technologies have been proposed

(Howcroft et al., 2013), including solutions based on inertial sensors embedded into wearable

devices or smartphones. There are also solutions based on force and pressure platforms aiming at

assessing multiple factors of balance and correlated fall risks.

Wearable devices containing inertial sensors have been used for collecting movement data

during the execution of standard mobility tests such as the TUG (Salarian et al., 2010; Greene et al.,

2010), STS (Doheny et al., 2011), 5 times sit-to-stand (5-STS) (Narayanan et al., 2010; Liu et al.,

2011; Doheny et al., 2013) or stance balance (Doheny et al., 2012). The advantage of using inertial

sensors during the execution of a standard test is the additional quantitative information that can be

derived. This information may be helpful to better assess and characterize the mobility and balance

conditions of a person. Moreover, some characteristics that are not perceived with subjective

assessments, such as POMA, may become relevant when computing objective metrics from the

inertial sensors signal. By eliminating the need for observation of movements and subjective

assessment the output extracted is potentially more reliable and reproducible.

The inertial sensors built-in smartphones or wearables have been used in our previous studies

for fall detection (Aguiar et al., 2014a) and activity monitoring (Aguiar et al., 2014b) and sim-

ilar metrics and algorithms can be applied to the signal collected during standard fall risk tests.

The introduction of this accessible and easy to use technology can contribute to making fall risk

assessments more widespread and reach a larger potentially affected population.

The TUG test evaluates the time that a person takes to stand up from a chair, walk forward,

turn around, walk back to the chair and sit down. This test was reported to be predictive of falls

with a sensitivity of 81% and a specificity of 39% (Whitney et al., 2005) and is currently widely

used as a standard fall risk assessment tool. The instrumented version of TUG (iTUG) has recently

been used to extract quantitative information during the test, besides the total time of execution,
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which was the only score of the original TUG test. The analysis of the sensors used to instrument

the iTUG could give more insights during the walking phase, the sit and stand transition phases,

and the turning phases of the TUG test. Salarian et al. (2010) used the iTUG test to assess mobil-

ity impairments in Parkinson’s patients versus age-matched controls. Seven inertial measurement

units containing accelerometers and gyroscopes were attached to the forearms, shanks, thighs,

and sternum of the participants while performing the iTUG test with 7m walkway at their normal

speed. Automatic segmentation of the four major components of iTUG, sit-to-stand, steady-state

gait, turning, and turn-to-sit, was performed. Despite the similarity of the total time to perform

iTUG, several measures related to some components of iTUG, namely gait, turns and turn-to-sit,

showed significant differences between groups. Test-retest reliability was also generally good.

Greene (2014) used the iTUG test and logistic regression models to classify individuals with and

without falls history, using temporal and angular velocity parameters derived from two sensors at-

tached to the shanks. The models demonstrated good overall performance, with a mean sensitivity

of 77.3% and mean specificity of 75.9%. This performance is higher than the one obtained using

logistic regression models based on the standard TUG timing and the BBS.

In addition to the iTUG, waist-mounted accelerometers have been used for data collection

during the Alternate-Step Test (AST) and 5-STS, for which time-domain (Narayanan et al., 2010)

and frequency-domain (Liu et al., 2011) features have been extracted. After mapping the extracted

features toward the target value of the PPA score using a linear least-squares model, the leave-one-

out cross-validation was employed. A good correlation with PPA score and low root mean squared

error (RMSE) were found especially when including frequency-domain features.

The related work described before comprises studies that used any type of sensors to retrieve

metrics during the execution of fall risk functional tests. The studies focused only on clinical,

self-reported, or measurable variables (e.g., (Nelson et al., 2001; Vassallo et al., 2008)), are not

discussed in this section. We only note that the sensitivity achieved in these studies varied from

43% to 100% (median = 80%), whereas the specificity ranged from 38% to 96% (median = 75%).

The work of Palumbo et al. (2014) estimated that a theoretical maximum accuracy of a fall

prediction model, attempting to identify people with at least one fall incident over a year from the

time of the testing, would not exceed 0.81 (maximum AUC of 0.89), which has a moderate effect

size. They expect the statistical effect of fall prediction models to be small, which is the reason

why many research studies in the area report negative results, especially if the sample size is small.

Howcroft et al. (2013) reviewed previous studies focusing on fall risk assessment with inertial

sensors. The authors concluded that future research should: i) consider investigating the relation-

ship between the models’ predictive variables and specific fall risk factors and ii) focus on groups

with an increased fall risk due to some diseases. As weak points of the previous studies, the au-

thors reported that 50% of them had not used separate datasets for model training and validation,

which could have impacted the models’ applicability beyond the training set population. The same

pitfalls were identified by Shany et al. (2015), who bemoaned that most of the previous literature

is reporting over-optimistic results due to small sample sizes used, questionable feature selection

processes, and biased validation methodologies that lack external validation sets. Moreover, ap-
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plying the most commonly used cut-off values in clinical assessment tests could have biased the

decisions made since the thresholds typically used to split classes had produced false positives and

false negatives, introducing inaccuracies when evaluating sensor-based models. Another aspect to

be considered is that clinical assessment thresholds were not used consistently across the research

studies included in the review. The prospective fall occurrence rate is considered to be the most

reliable criterion for dividing subjects into non-fallers and fallers (Howcroft et al., 2013); however

this criterion was only used in 15% of the studies. Regarding the retrospective fall assessment, the

most relevant limitations are the inaccurate recording of fall histories most commonly assessed

by self-reported questionnaires and the fact that balance, strength, and gait parameters can change

due to past falls.

4.4.1 Retrospective studies

Bigelow and Berme (2011) studied posturography for clinical fall risk screening of older adults.

They recruited 150 adults aged 65 and above from local senior centers and independent living

facilities. The subjects were categorized as recurrent fallers and non-recurrent fallers based on

their fall status in the previous year. The participants performed four standing tasks on a force

platform. The authors extracted "traditional and fractal measures from the center of pressure data"

(Bigelow and Berme, 2011). Their logistic regression model exhibited a sensitivity (recall) of 75%

and a specificity of 94%. The authors highlighted the importance of combining multiple variables

rather than using only a single measure to compute the fall risk.

Qiu et al. (2018) reported a study conducted with multiple wearable inertial sensors for mul-

tifactorial fall risk assessment on 196 community-dwelling older women. The sequence included

the TUG, 5-STS, and Limits of Stability tests. A model built using inertial sensor data and support

vector machine was able to classify between fallers (N = 82) and non-fallers (N = 114) based on

fall histories. The model achieved an overall accuracy of 89.4% (92.7% sensitivity and 84.9%

specificity). The results of the study support the idea that inertial sensors allow the identification

of individuals with a high risk of falls, who should be followed with fall prevention strategies.

Greene et al. (2012) performed a quantitative estimation of the fall risk using multiple sensors

during the standing balance exercise. The authors acquired data from 120 community-dwelling

older adults aged over 60 by using a pressure-sensitive platform sensor and attaching a body-worn

inertial sensor to the lower back of the participants. The estimation of the fall risk was compared

with the BBS. The results were analyzed by gender using a support vector machine model, which

returned a mean classification accuracy of 73.07% for the participants with a self-reported history

of falling in the past 5 years. These results compared favorably with those obtained using solely

the BBS (with a mean classification accuracy of 59.42%).

4.4.2 Prospective studies

Liu et al. (2014) reported an accelerometer-based fall prediction model that was trained using

wearable inertial sensor data obtained in a routine assessment, including the TUG test, AST, and
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5-STS. The study sample included 68 subjects aged from 72 to 91 from a previous study and a

second group of 30 subjects aged from 68 to 92 who were newly recruited. The authors have

assessed the prospective falls that occurred in the following 12 months based on fall diaries. The

best classification performance allowing to distinguish fallers from non-fallers with a sensitivity of

68% and a specificity of 73% was achieved by a logistic regression model that was trained using

only AST data.

van Schooten et al. (2015) performed several studies focusing on the assessment of the am-

bulatory fall risk. The study participants aged over 65 wore an inertial sensor for one week. The

authors extracted metrics related to the amount of physical activity and gait characteristics and

reported several approaches ranging from logistic regression to deep learning methods to discrim-

inate between fallers and non-fallers. A logistic regression model trained on accelerometry-derived

parameters of gait obtained from 139 participants allowed to substantially improve the area under

the curve (AUC) up to a value of 0.82, compared with using questionnaires and functional test

scores alone. Deep learning models built using a dataset of 296 older adults achieved an accu-

racy similar to that of the logistic regression model. Aicha et al. (2018) highlighted the fact that

deep learning models have the advantage of not requiring the implementation of feature extraction

methods. On the other hand, deep learning models lack interpretability, which limits their appli-

cation in medical contexts. The same authors (van Schooten et al., 2016) also demonstrated that

the gait quality in daily life is "predictive for both time-to-first and time-to-second falls in both

univariate and multivariate models" with adequate to good accuracy.

4.5 Overview

The fall risk factors that are underling the occurrence of a fall are multiple and range from per-

sonal intrinsic factors, such as gait and balance disorders, to external uncontrolled factors, such as

weather conditions and home hazards. The research area of fall risk assessment, or fall prediction,

focuses on developing strategies to assess the risk of falling of a person in order to trigger specific

fall prevention strategies that aim to revert some of the fall risk factors. However, there is still

a lack in a standard protocol, application guidelines, and frequency to apply fall risk assessment

in the elderly population, either in clinical or community settings. Some efforts have been made

in order to provide scales, questionnaires and functional tests to that end, however, a multifac-

torial fall risk assessment should combine multiple fall risk factors and integrate objective and

measurable outcomes.

One of the most commonly reported limitations of fall risk assessments relates to the fall risk

parameters being evaluated and the data sources used for feature extraction. The majority of the

existing studies focusing on fall prediction are based on a single source of data, either clinical and

self-reported or extracted from inertial sensors, instead of a combination of multiple data sources.

Another challenge presented in previous studies is the small sample size of datasets. Considering

prospective studies, with the exception of the work by van Schooten et al. (2016), the majority

of existing studies are based on data collected from less than 150 participants. The collection of
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larger datasets is time and resource consuming, whereas small-size datasets can impact the quality

of the analysis and generalizations retrieved from that data. Moreover, the low incidence of falls

(less than 30% in the older population) leads to unbalanced datasets which can negatively impact

results. While there is also a lack of consensus regarding the output metric that should be used to

divide population groups into fallers and non-fallers, the 1-year follow-up occurrence of falls has

been pointed out by Howcroft et al. (2013) as the most reasonable metric.

In the next sections, we will introduce a multifactorial fall risk screening protocol and corre-

sponding data collection and analysis, that we have applied to 403 participants. Only a part of

the population aged over 65 was taken into consideration for analysis, resulting in a total of 281

participants. Based on the dataset collected we aim to:

• Study signal processing methods applied to functional tests instrumentation: we developed

a signal processing methodology of the sensor data collected during the execution of func-

tional tests, for segmentation of relevant time periods, and computation of metrics. This

study will provide the basis for the application of machine learning algorithms for fall pre-

diction based on features extracted from sensor data.

• Analyse the added value of sensor data compared to tests scores: we applied signal process-

ing and feature extraction methods for several instrumented functional tests using inertial

sensors and a pressure platform. We have used a fall level to divide population groups into

fallers and non-fallers, based on previous falls history and the use of walking aid. We aim to

study the predictive power of sensor-based features compared to functional test scores and

personal self-reported data.

• Study multimodal data fusion approaches for fall prediction: we analyzed the added value

of several data sources, including not only clinical and self-reported data but also informa-

tion about functional capabilities, such as mobility, balance, and strength. These capabilities

were obtained from inertial sensors and a pressure platform during the execution of a mul-

tifactorial screening protocol. This protocol combined the most relevant tests for assessing

grip strength, balance, mobility and muscle strength. The multifactorial nature of the col-

lected data provided an opportunity to compare models based on a single source with models

based on data fusion. Three alternative approaches were explored for data fusion: an early

fusion approach, that combines all data in a unified feature vector; a late fusion approach

that combines the predictions of three classification pipelines trained with each of the in-

dividual data sources; and a slow fusion approach that fuses information from each data

source individually in the first layers of a neural network. The record of the occurrence of

falls over a 1-year period based on monthly follow-up phone calls was used to differentiate

groups.

In both studies, we based our analysis on reported fall occurrences instead of automatic de-

tection of falls. While there are tools for automatic detection of falls, such as personal emergency

response systems (PERS), these have never been reported to be used during the follow-up period.

Automatic fall detection systems based on wearable sensors will be studied in detail in Part III.
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Strategies for fall risk assessment are currently not multifactorial neither implemented as a

regular assessment of health status in clinics or hospitals. The reason could be related to the

lack of an easy to implement, complete and objective test to assess the elderly’s fall risk level.

More recently, inertial wearable sensors have been used in combination with standard tests to

evaluate the performance of the person during each phase of the test in an objective way. This

work proposes a methodology for collecting and analyzing the Timed-Up and Go (TUG) test

instrumented with wearable inertial sensors. An automatic algorithm to segment the TUG test into

three components was implemented prior to feature extraction. Overall, features from the walking

and the first turning phase of the test could provide meaningful information to differentiate groups

of high and low fall risk.

41
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5.1 Methods

5.1.1 Participants

A group of 18 community-dwelling older adults has been invited and gave their informed consent

to participate in this study. The group has an average age of 73± 5 years old, body mass index

(BMI) of 26.7± 4 kg/m2 and is composed of 5 males.

5.1.2 Protocol

The participants were asked about their previous falls and the number of falls reported in the

previous 12 months was registered. A medical history questionnaire was also given to them to

evaluate chronic conditions, audition and vision problems, other relevant medical conditions and

exercise habits.

They were also evaluated using an adapted iconographic version of the Tinetti Falls Efficacy

Scale (FES). A set of ten questions about the confidence level in performing daily life activities

was presented using an illustration and a small phrase in Portuguese in a smartphone (Guimarães

et al., 2013). The questions should be rated on a three-point Likert scale from 1 (very confident) to

3 (not confident). This scale is converted to a final score ranging between 0 and 100, where each

question has a value of 10 final points and each point in the Likert scale has a value of 3.3 final

points. Final scores higher than 70 are associated with a higher fear of falling (Tinetti et al., 1990).

POMA was also applied. This is a task-oriented test to assess gait and balance abilities, scoring

each task by an ordinal scale from 0 (highest level of impairment) to 2 (independent) by means of

observational judgment. The balance assessment was based on sit to stand transitions, turns and

standing balance. The gait assessment was based on gait analysis in a straight 3-meter walk. The

final score is a sum of the result for each task of the assessment and is ranged between 0 and 28.

Scores lower than 19 are associated with high fall risk and scores higher than 25 are associated

with low fall risk (Faber et al., 2006).

The standard TUG was also performed by the participants. They were asked to start sitting

down on a chair and when the test starts, the person should stand up, walk straight for 3 meters

at their normal pace, turn around, walk back to the chair and sit down. The final score of this

test corresponds to the time needed to perform the TUG test. Scores higher than 14 seconds are

considered associated with high fall risk (Shumway-cook et al., 2000).

An instrumented version of the TUG test was performed, using the inertial measurement unit

of a smartphone, placed on the pocket or fixed at the waist or at the leg, and video records to

annotate data during the test. In contrast to the traditional timed-up and go test, instead of keeping

the walking distance of 3 meters fixed, the iTUG test had a fixed duration of 30 seconds. Auditory

cues were used to instruct the person to stand up and walk forward in the first 15 seconds and

then turn, walk back and sit down in the last 15 seconds. Accelerometry data were collected

using a smartphone built-in 3-axial accelerometer, sampled at 200Hz. The gyroscope signal was
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also recorded with a sampling rate of 200 Hz. Both signals were synchronized and were used to

segment the TUG test into its several components.

5.1.3 Signal Segmentation

For the data collected during the iTUG test, manual and automatic segmentation of the accelerom-

eter signal was performed to obtain three segments corresponding to three components of the TUG

test: stand up, walk forward and turn around. Since it could happen that for some of the higher

risk persons the given time was not enough to return to the chair, the second segment of walking

and sitting down were not considered.

Manual segmentation was based on the visual inspection of the video recorded during the

performance of the tests. The signal and video collected were synchronized and the timestamps of

the transition between phases were registered.

Automatic segmentation is based on the integral of the gyroscope signal to identify the turning

points. A turning was considered when an angle of 150o was detected in the integral. To identify

the duration of the turn, the previous minimum and the next maximum were used as start and end

of a turn, Figure 5.1. In order to segment the sit-to-stand and stand-to-sit transitions, the angle with

the gravity vector was calculated based on the accelerometer readings. Consecutive differences of

3 degrees in the angle signal were associated with transition phases. After segmented these phases,

the in-between phases were considered as walking components.

5.1.4 iTUG Feature Extraction

For each segment, the duration and the number of steps were also manually retrieved from the

accelerometer signal and confirmed by video records. The magnitude of the accelerometer signal

was computed and several statistical features were retrieved, namely, number of times the magni-

tude signal crosses the mean value (MeanCrossCount), interquartile range (IQR), energy, entropy,

standard deviation (Stdev), mean value, median deviation (MedianDev), root mean square (RMS),

skewness and kurtosis. Maximum and minimum values were also considered as signal features

and the average value of the minimum and the average value of the maximum (MinAvg and Max-

Avg). The feature AvgPeak Height is defined as the difference between MaxAvg and MinAvg.

Several features were extracted from the FFT of the magnitude of the accelerometer signal. The

maximum amplitude (FFT Max Amp) and the second maximum amplitude (FFT 2nd Max) in the

spectrum were considered as features. The ratio (FFT Amp scale) and difference (FFT Amp dif)

between these two features were also computed.

5.2 Results

In this section, the results of the standard fall risk assessment tests are detailed and also the results

of the Timed-Up and Go test instrumented with inertial sensors. According to the results of the

standard tests, the segmentation in two different groups of risk of falling is not straightforward and
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so the metrics extracted from the instrumented TUG could help to better differentiate the groups

of fall risk.

5.2.1 Standard Tests Results

Table 5.1: Standard tests results.

Participant Previous Falls FES POMA TUG time (sec)
1 1 13 26 14.5
2 0 27 25 15.7
3 5 100 9 40.5
4 6 67 23 13.6
5 1 87 7 41.2
6 1 0 24 9.4
7 0 20 20 19.9
8 3 23 25 9.2
9 0 0 26 12.3
10 2 20 24 10.6
11 0 30 24 19.0
12 0 17 26 13.0
13 0 20 26 18.0
14 0 60 20 14.0
15 0 0 26 14.0
16 0 10 26 10.4
17 1 0 26 10.0
18 0 0 27 7.0

State-of-the-art fall risk assessment tests and questionnaires were performed and the results

are compiled in Table 5.1. The results of these standard fall risk assessment tools were used to

segment the population in higher and lower fall risk subgroups. A higher fall risk group was

defined with the persons that have a Tinetti POMA test result lower than 25 and TUG time equal

or higher than 14 seconds. The persons identified with a higher risk of falling in this dataset are

highlighted in grey in Table 5.1. This group is composed of 5 persons. The number of previous

falls was not considered to divide the two groups because the number reported by the participants

not always correspond to the true value, due to missing reports or confusion in the timeline of

events.

Since participants 1, 2, 4, 6, 10 and 13 only satisfied one of the criteria, they were not grouped

in the higher risk group.

Some statistics concerning other relevant fall risk factors were also computed. Only partici-

pants 2, 15, 16, 17 and 18 were male. For the higher risk group, only participants 3, 5 and 7 used

assistive walking devices. Participants 4 and 5 had a knee and a hip prosthesis, respectively.

The incidence of some diseases in this population was: rheumatic diseases were presented in

11 of the 18 participants, 3 of them belong to the higher risk group. Chronic pain was reported

by 14 of the 18 participants, 4 of them belong to the higher risk group. Most of the participants,
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reported hypertension and dizziness in the previous year, 9 of the 18 participants reported both

conditions, only participants 3, 14 and 15 reported dizziness but not hypertension and only partic-

ipants 5, 6, 10 and 18 reported hypertension but not dizziness. For each condition, only 3 partici-

pants belong to the higher risk group. Polypharmacy was reported by 10 of the 18 participants, all

the participants of the higher risk group reported polypharmacy.

When asked about physical activities during the week, 10 out of 18 participants practice any

physical activity more than twice a week, only one of them belongs to the higher risk group.

5.2.2 Automatic Segmentation of iTUG phases

Figure 5.1: Example of automatic segmentation of TUG components for participant 1. Accelerom-
eter signals were recorded for the three axes (x,y,z) (Figure 5.1-A). The magnitude of the ac-
celerometer (Figure 5.1-B) was used to calculate the accelerometer angle (Figure 5.1-C) with the
gravity vector. The signal of the gyroscope was only analyzed for the y-axis (Figure 5.1-D). The
variations of the gyroscope absolute value were not distinguishable (Figure 5.1-E). However, the
gyroscope angle (Figure 5.1-F) allowed a better identification of segments: green lines represent
the transition points and red lines represent the turning points (start and end of turning).

The segmentation was done based on the smartphone built-in inertial sensors, accelerometer

and gyroscope, as illustrated in Figure 5.1, for participant 1.

The transition phases at the beginning and at the end of the test are present in the accelerometer

signal of the first row of images of Figure 5.1. The flat lines in Figure 5.1-A represent variations

in the orientation of the accelerometer that occur when the person changes between sitting and

standing positions. These variations are also observed in the accelerometer angle of Figure 5.1-C

and marked with green lines in Figure 5.1-F. The accelerometer angle disputed in Figure 5.1-C is

calculated with the magnitude signal of Figure 5.1-B and the gravity vector (0, 1, 0).
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For the identification of the turning segments, the integration of the gyroscope y-axis signal

was used (Salarian et al., 2010). As shown in Figure 5.1-D the two higher peaks of the signals

represent the points when the person is turning. These variations correspond to absolute values of

the gyroscope signal higher than 120 degrees per second. The detection was performed with the

signal of Figure 5.1-F, the angle around the y-axis. After identifying the points with an angle equal

to 150 degrees, the signal was filtered using a moving average with a window size of 100 samples.

The start and end points of each turning phase were identified based on the previous minimum and

next maximum around the point with an angle of 150 degrees. These points are marked in Figure

5.1-F with red lines.

5.2.3 iTUG Features

Table 5.2: TUG features for walking and turning segments.

Feature Low Riska High Riska p-Valueb

Walking Segment
RMS 10.55± 0.35 10.20 ± 0.16 0.05
Stdev 2.32 ± 0.67 1.47 ± 0.40 0.02

MedianDev 1.21± 0.31 0.54 ± 0.30 0.00
IQR 2.52 ± 0.62 1.13 ± 0.66 0.00

Skewness 0.89 ± 0.53 2.42 ± 1.24 0.00
Kurtosis 1.97 ± 2.55 13.72 ± 9.61 0.00

MeanCrossCount 86.23 ± 23.62 135.80 ± 67.90 0.03
FFT Max Freq 1.67 ± 0.23 3.47 ± 2.86 0.03

FFT 2nd Max Freq 3.48 ± 1.50 5.53 ± 2.31 0.04
FFT Max Amp 1.61 ± 0.53 0.65 ± 0.36 0.00
FFT 2nd Max 0.76 ± 0.22 0.50 ± 0.24 0.04

FFT Amp scale 2.12 ± 0.51 1.26 ± 0.10 0.00
FFT Amp dif 0.84 ± 0.42 0.15 ± 0.12 0.00

Turning Segment
Stdev 1.91 ± 0.93 0.80 ± 0.27 0.02

Median Dev 1.06 ± 0.76 0.31± 0.22 0.05
IQR 2.15 ± 1.50 0.66 ± 0.47 0.05

MinAvg 6.72 ± 0.94 8.22 ± 0.24 0.00
MaxAvg 13.97 ± 2.10 11.91± 0.53 0.05

AvgPeak Height 7.25 ± 2.83 3.70 ± 0.74 0.02
Energy 59803.05 ± 23109.31 98759.52 ± 33372.40 0.01
Entropy 8.81 ± 0.92 9.83 ± 0.51 0.03
Kurtosis 2.50 ± 3.10 10.54 ± 8.98 0.01

MeanCrossCount 27.69 ± 13.01 73.20 ± 41.25 0.00
FFT 2nd Max 0.70 ± 0.30 0.27 ± 0.11 0.01

aMean ± standard deviation; bsignificance level of 5%

After extracting the features from the first three components of the test, only the ones be-

longing to the component of the first walking phase and the first turning phase showed significant
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differences between the mean of high risk group and the mean of low risk group. Applying the

t-test with a significance level of 5% the most relevant features are presented in Table 5.2 divided

per test segment. As expected, a person with a higher risk of falling will walk slowly and the foot

impacts will be lower than a person with a lower risk of falling. This behavior is explained with

the features RMS and Stdev that will be lower for a higher risk group than for a lower risk group.

Also, the MedianDev and the IQR were expected to be lower for a higher risk group. Conversely,

during the turning phase, a person with mobility disabilities will have more difficulties to turn and

will for consequence take more steps to turn than a lower risk person. Features energy and entropy

are higher for the higher risk group as a consequence of the higher movement during turns.

5.3 Discussion

Despite the fact that the standard tests as FES, POMA and TUG could differentiate the two groups

with a significance level of 5% (p-values are 0.0005 (FES); 0.0002 (POMA) and 0.0008 (TUG)),

sometimes is difficult to evaluate a person based only on these three tests. As for example, there

are participants that might be categorized in the higher risk group but the values of the standard

tests are very similar to the lower risk participants. The number of previous falls did not have a

significant difference between higher and lower risk groups (p-value of 0.576) and so this factor

was not used to differentiate the groups. In accordance with the findings of Salarian et al. (2010)

the standing up component of iTUG did not reveal significant differences between the two fall risk

groups. However, the walking and turning components were the most significant ones in terms of

features that could be useful to differentiate between higher risk and lower risk person.

In a previous study (Guimarães et al., 2014), walking features were extracted from inertial sen-

sors signals and have shown to be well correlated with those obtained from a kinematic evaluation

using high-speed cameras. The features extracted were different from the ones computed in the

present study, since they were matched to the outputs of the usual kinematic evaluations. Some

examples of such features are gait cadence and speed, pelvic sway, asymmetry of step duration

and length. While those features may better match human observation, be more physiologically

meaningful and easier to interpret, a number of approximations and assumptions are required to

compute them from inertial sensors signal. These assumptions often introduce inaccuracies and

errors that may degrade the quality of the fall risk assessment outcome. The features computed in

the present study show significant differences between the higher and the lower fall risk groups.

The feature extraction process should be implemented for a larger dataset with different fall risk

profiles in order to identify the best set of features that could differentiate lower and higher risk

persons with very different profiles and different combinations of fall risk factors. The final set

of features would then be used to create a model in order to distinguish higher and lower fall risk

groups.

This study indicates that the iTUG is a viable tool for fall risk assessment, with the potential

to be implemented in clinical or hospital environments. The test is quick and the instrumentation

is easy and does not require any specialized technician to perform it.
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Approaches for Fall Risk Assessment

J. Silva, J. Madureira, C. Tonelo, D. Baltazar, C. Silva, A. Martins, C. Alcobia and I. Sousa,

Published in Proceedings of BIOSIGNALS 2017 - 10th International Conference on Bio-inspired

Systems and Signal Processing.

Traditional fall risk assessment tests are based on timing certain physical tasks, such as the

timed up and go test, counting the number of repetitions in a certain time-frame, as the 30-second

sit-to-stand or observation such as the 4-stage balance test. A systematic comparison of multi-

factorial assessment tools and their instrumentation for fall risk classification based on machine

learning approaches were studied for a population of 296 community-dwelling older persons aged

above 50 years old. Using features from inertial sensors and a pressure platform by opposition to

using solely the tests scores and personal metrics increased the F-Score of Naïve Bayes classifier

from 72.85% to 92.61%. Functional abilities revealed a higher association with fall level than

personal conditions such as gender, age and health conditions.

49
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6.1 Methods

6.1.1 Subjects

A total of 296 subjects voluntarily participated in the study. Informed consents were obtained

from all participants who responded to personal information, health, previous falls inquiries and

completed the three instrumented assessment tests: TUG, STS and 4-stage. The data collection

took place in different environments, mostly at community (76.0%), at day-care centers (15.9%),

and at nursing homes (8.1%).

Demographic and anthropometric information was annotated for all the subjects along with

health-related information from two questionnaires: health conditions and medication intake. Fall-

related information was inquired using a history of falls questionnaire.

The mean age of the sample was 70.2 years (93 persons with age below 65 years), the majority

of the subjects were women (68.2%), 25.0% lived alone, 51.0% only have primary education and

11.5% use an assistive device. Diabetes was the most prevalent health condition (15.5%), followed

by osteoarthritis (14.2%) and osteoporosis (10.8%).

Urinary incontinence was reported by 22.3% (by answering the question: do you leak urine

when you cough, laugh, sneeze or lift an object?); fear of falling was reported by 47.0% (by

answering the question: are you afraid of falling?); 57.4% of the persons referred to intake 4 or

more different medicines per day (mean was 4.52 medicines).

During the previous year, 30.7% of the persons have fallen (18.9% outdoors) and 8.1% under-

went to the emergency service (hospital). The wrist/hand fracture was the most common injury

(2.4%) among these fallers.

6.1.2 Screening Protocol

This section describes the fall risk assessment tests applied in this study:

Timed Up and Go Test (TUG) fast pace: the person is asked to start seated on a chair and when

the test starts, the person should stand up, walk straight for 3 meters, as fast as the person can,

turn around, walk back to the chair and sit down (Beauchet et al., 2011). Test score corresponds

to the time needed to perform TUG test (TUG duration). A threshold of 10s has been found to

be associated with falls occurrence in 12 months follow up period for community-dwelling older

adults (Rose et al., 2002).

30 Seconds Sit-to-stand Test (STS): the person is instructed to sit on a chair and repeatedly

stand up and sit down as many times as possible over 30 seconds (Jones et al., 1999). The person

must be seated in the middle of the chair, feet should approximately width apart and placed on

the floor, and arms crossed by the wrists placed against the chest. The final score of this test is

the number of times the person completes a cycle of sit-to-stand and stand-to-sit (number of STS

cycles). While normative levels are dependent on age and sex (Rikli and Jones, 2010), a score of

fewer than 15 transitions in the 30 seconds test duration has been used to identify “fallers” in a

group of elderlies (Cho et al., 2012).
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4 Stage Balance Test “modified”: the person is instructed to progressively maintain four-foot

positions for 10 seconds each, without moving his/her feet or needing support. The foot positions

are side by side stance, semi-tandem stance, tandem stance, and unipedal stance (Rossiter-Fornoff

et al., 1995; Thomas et al., 2014). For each position, the subjects were instructed to stand quietly

without shoes on the pressure platform, with their arms along the body. In this study, except for

the one-leg stand position (unipedal stance), all positions must be performed with eyes open and

then closed. The final score of this test is the number of positions a person can hold for 10 seconds

without losing balance (number of 4-stage exercises). The inability to complete the tandem stance

position has been associated with a higher risk of falling (Murphy et al., 2003).

The tests were applied by trained health professionals. Prior to the execution of tests, the test

procedure was explained to each person and it was demonstrated how the test should be performed.

Auditory cues were also used to instruct the person during the execution of the tests. Only persons

who performed the three functional tests (TUG, STS, and 4-stage) were included in this study.

6.1.3 Instrumentation

The participants were instrumented with one wearable inertial sensor during the execution of TUG

and 30-seconds sit-to-stand tests. The 4-stage balance test was performed on a pressure platform,

as can be seen in Figure 6.1.

The wearable sensor was developed and assembled at Fraunhofer AICOS and was placed at

the lower back. Inertial data was collected using the built-in 3-axial accelerometer and 3-axis

gyroscope, both sampled at 50 Hz. Raw data from the accelerometer sensor was acquired for all

the tests in m/s2, and in rad/second for the gyroscope sensor.

The pressure distribution data was measured with PhysioSensing platform (Sensing Future

Technologies, Lda) running at a frequency of 50Hz. It contains 1600 pressure sensors of size

10mm by 10mm with a maximum value of 100N/sensor. Voltage data is converted with an 8-bit

A/D converter and is transmitted via USB (Universal Serial Bus). In this way, it is possible to

receive raw data of each pressure sensor as well as the raw center of pressure coordinates (CoP),

in cm. In order to obtain more precision in CoP displacements, an algorithm was employed to

obtain CoP positions in mm, using the matrix of pressure sensors (Hsi, 2016).

6.1.4 Inertial Sensors Data Analysis

The accelerometer and gyroscope signals were synchronized and used to segment the TUG test

into its several components (stand up, walk forward, turn around, walk back to the chair and sit

down) as previously described in (Silva and Sousa, 2016) and to identify the stand and sit phases

of the STS test. The identification of the STS transition points was made analyzing the y-axis

of the gyroscope signal. After filtering the signal with a moving average filter of 20 samples

window size, zero crossings were identified (Guimarães et al., 2014). In order to remove outliers,

a minimum of 20 samples was used as the difference between consecutive transition points. Since

the score is given by the total number of complete cycles, it was considered one cycle between
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Figure 6.1: Example of a test set-up, with the pressure platform in the floor and an illustration of
the inertial sensor placement of at the lower back, since it is covered by the clothes.

two transitions points, one sit-to-stand and one stand-to-sit. The number of cycles is, therefore,

half the number of transitions points identified, as illustrated in Figure 6.2.

For each one of the TUG segments and for the whole STS test, statistical and frequency do-

main features were extracted from the magnitude of the accelerometer signal. The list of features

has been reported in (Silva and Sousa, 2016) and corresponds to mean, median, maximum, mini-

mum, signal height, standard deviation, median deviation, root mean square, interquartile range,

number of times the magnitude signal crosses the mean value, energy, entropy, skewness, kurto-

sis, average of minima, average of maxima, average signal height, fundamental harmonic of Fast

Fourier Transform (FFT) spectrum and fundamental amplitude.

Additional metrics for each test were calculated from the inertial data: for the TUG test, the

duration of the stand segment (duration of the first segment) and the number of steps (calculated

with a step counter algorithm reported by Aguiar et al. (2014b)) taken during the test; for the STS

test, the number of STS cycles and the STS power (Zhang et al., 2014).

6.1.5 Pressure Platform Data Analysis

For each posture of the 4-stage balance test executed, the pressure values on each sensor of the

pressure platform were recorded. The CoP coordinates were then obtained and several parameters,

which are typically used in postural sway and fall risk assessment (Bigelow and Berme, 2011;

Guimarães et al., 2014; Raymakers et al., 2005) were calculated.

For all the medio-lateral (ML) and antero-posterior (AP) CoP position coordinates obtained

during each posture execution, the mean (mean AP CoP positions, mean ML CoP positions),

standard deviation (std AP CoP positions, std ML CoP positions), root mean square (rms AP CoP

positions, rms ML CoP positions), maximum (max AP CoP positions, max ML CoP positions) and

minimum (min AP CoP positions, min ML CoP positions) were calculated.
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Figure 6.2: Axis x (red), y (green), z (blue) and magnitude signals (black) of the accelerometer
and gyroscope signals for STS test with identification of transition points with blue vertical lines.
The interval between two consecutive lines is considered as one STS cycle. Figures are from a
low risk person.

The displacement of CoP in each direction per time unit gave rise to the mean velocity of CoP

displacement (vm CoP position AP, vm CoP position ML) metrics.

Another metric extracted was the area of a confidence ellipse containing 95% of the CoP coor-

dinates projected in a 2D plan (Ellipse area). Figure 6.3 shows a comparison of CoP displacements

in ML and AP directions for two persons with different fall risk levels during the semi-tandem

stance with eyes closed. For a low fall risk person (left figure) the displacement is concentrated

around the center, however, for a high fall risk person, more outliers in ML and especially in AP

direction are identified, reflecting unbalance situations.

Sway can be defined, in this scope, as the amplitude or absolute distance of CoP oscillations.

The sum of all the distances accumulated during the execution of each posture is computed result-

ing in the CoP path length (total Sway distance). The standard deviation of sway distances (std

Sway) and the maximum and minimum amplitude of CoP oscillations (maxSway and minSway)

were also included as pressure platform metrics.

Figure 6.3: CoP displacements in ML and AP directions and 95% confidence ellipse area (red
line) during semi-tandem stance with eyes closed of 4-stage test. Left figure is from a low risk
person and right figure is from a high risk person, showing more outliers in ML and AP directions.
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6.1.6 Machine Learning Methods

Classification and regression methods were tested to differentiate between high and low fall risk

groups using metrics extracted from inertial sensors and pressure platform. Rapid Miner Toolkit

was used for the train and test processes. Ten-fold cross-validation with a random split was used

for all the processes. In order to define a metric to divide the groups, a fall level was determined

based on the history of falls questionnaire and usage of walking aid, as presented in Figure 6.4,

since these two factors have evidence to be more related with the risk of falling. The fall level is

merely an indication if the person shows more or less probability of falling since the occurrence

of the fall in 12-months follow-up period was not possible to measure. The dimension of the

population is 296 subjects. The low risk group represents 83% of the dataset and is composed

of 245 subjects (35% within 50-65y.o. and 65% above 65y.o.). The high risk group represents

17% of the dataset and contains the remaining 51 subjects (16% within 50-65y.o. and 84% above

65y.o.). This distribution is in agreement with the fall incidence in the elderly population, which

is less than 30% (Bergen et al., 2016).

Figure 6.4: Fall level definition based on history of falls and usage of walking aid.

Two approaches were compared: first, only personal metrics and test scores were used to

construct the feature vector, and then this vector was replaced with features extracted from inertial

sensors and pressure platform. The objective was to study the added value of the sensors’ features

to differentiate between fall risk groups.



6.2 Results 55

The performance of several classification and regression methods was compared based on

accuracy, precision, recall and F-Score. It was considered low risk as the positive class and high

risk as the negative class. TP states for true positive, FP for false positive, TN for true negative

and FN for false negative. The performance metrics are calculated as follows:

Precision (Prec) = TP / (TP+FP) (1)
Recall (R) = TP / (TP+FN) (2)

Accuracy (Acc) = (TP+TN) / (TP+TN+FP+FN) (3)
F1-Score (F1) = (2P x R) / (P+R) (4)

6.2 Results

6.2.1 Statistical Analysis

A statistical analysis has been conducted for the variables: gender, age, body mass index (BMI),

number of medicines, number of health conditions, fear of falling, TUG score, STS score, and

4-stage score. Cut-off values that have been used in previous studies referred to in section 6.1.2 to

distinguish high and low fall risk levels were applied to each one of these variables. The Fisher’s

exact test was applied with the null hypothesis that there are no non-random associations between

the two categorical variables: fall level and each one of the variables considered. The Fisher’s

exact test p-value and odds ratio (OR) are reported in Table 6.1 and were calculated with Matlab

function fishertest.

Table 6.1: Odds Ratio and Fisher’s exact test p-value for personal metrics and tests scores with the
fall level.

Variable Odds Ratio p-value
Feminine Gender 1.04 1.00
Age >65 2.86 0.01
BMI <13.7 or BMI >29.7 1.58 0.18
More than 4 Medicines 1.96 0.05
More than 2 Health Conditions 1.56 0.38
Has Fear of Fall 3.35 0.00
TUG Duration >10 s 6.51 0.00
STS Cycles <15 11.25 0.00
Not completed 10s Tandem Stance (eyes open) 3.59 0.00

Presence of fear of falling, TUG duration above 10 seconds, number of STS cycles below 15

and not completed the tandem stance with eyes open were the metrics with higher odds ratio with

the fall level and p-value below 0.05. Thus, the hypothesis of a random association between fall

level and the variables in shaded lines of Table 6.1 can be rejected. Age above 65 years old and

take more than 4 medicines per day also showed a p-value below 0.05 but the OR was lower than

for the previously mentioned variables. For the remaining variables, the conclusion is that female

individuals, or individuals that have BMI lower than 13.7 or higher than 29.7 or that have more
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than two health conditions do not have greater odds of having a high fall level than individuals

that are male, have a normal BMI and have less than two health conditions. In general, test scores

showed a higher association with fall level than personal metrics, reflecting that functional abilities

have a higher impact on fall level than personal conditions of a person.

6.2.2 Machine Learning Approaches

Classification and regression methods were studied for the differentiation between low and high

fall risk groups using the fall level as the label. All algorithms applied were retrieved from the

Rapid Miner predictive models.

6.2.2.1 Functional tests scores

As a first analysis, personal metrics (age, gender, BMI, fear of fall, number of health conditions

and number of medicines) and test scores (TUG duration, number of STS cycles and number of

4-stage exercises) were used to define the feature vector and fall level was used as the label. The

results are summarized in Table 6.2.

Table 6.2: Classification and regression results for personal metrics and functional tests scores.
Accuracy, precision, recall and F-Score are in percentage (%).

Algorithm Accuracy Precision Recall F-Score
k-NN, k=4 81.41 69.33 63.00 66.01
Naïve Bayes 84.82 74.58 71.19 72.85
Random Forest 83.13 59.37 53.05 56.03
Decision Tree 81.44 68.28 60.33 64.06
Neural Net 82.45 69.22 64.84 66.96
SVM 82.45 49.08 51.21 50.12
Linear Regression 83.11 69.01 56.05 61.86
Logistic Regression 82.13 67.48 64.88 66.15

Naïve Bayes classifier obtained higher accuracy, 84.82%. Precision was 74.58% and recall

was 71.19%. Random Forest and Linear Regression also obtained acceptable results. In general,

all algorithms showed higher precision than recall.

6.2.2.2 Sensors features

In order to compare the previous results based on tests scores with the features extracted from

inertial sensors and pressure platform, a feature vector containing 224 sensors features was used.

For each TUG segment (stand, walk, turn and walk back) 19 statistical and frequency domain

features were extracted, yielding 76 features plus 2 metrics, time to stand and the number of steps.

For the STS test, the same 19 features were extracted plus 2 metrics, the number of STS cycles and

the STS power. For the 4-stage test, 17 CoP metrics were extracted for each one of the 7 exercises

(when available), yielding 119 features. Additionally, 6 personal metrics were added: age, gender,
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BMI, fear of fall, number of health conditions and number of medicines. The fall level was used

as the label. Since the number of features was considerably high, forward feature selection was

applied prior to cross-validation. Results are presented in Table 6.3.

Table 6.3: Classification and regression results for personal metrics and features extracted from
sensors. Number of features selected by forward feature selection follows the name of the algo-
rithm. Accuracy, precision, recall and F-Score are in percentage (%)

Algor. Accuracy Precision Recall F-Score
k-NN, k=4 [5F.] 85.78 87.79 95.88 91.66
Naïve Bayes [4F.] 87.16 88.18 97.50 92.61
Neural Net [5.] 87.20 88.05 97.94 92.73
SVM [3F.] 84.82 84.95 99.23 91.54
Random Forest [3F.] 87.48 87.92 98.43 92.88
Decision Tree [5F.] 88.17 89.47 97.10 93.13
Linear Regression [3F.] 85.89 85.66 99.55 92.08
Logistic Regression [4F.] 86.54 86.74 98.78 92.37

The decision tree classifier obtained higher accuracy, 88.17%. The precision was 89.47% and

the recall was 97.10%. Comparing the results of Naïve Bayes with the previous analysis, the

features obtained from sensors yield higher accuracy than only test scores. Moreover, features

from TUG and 4-stage tests were frequently selected with a forward feature selection method.

For all algorithms tested, using features from sensors provide higher precision and recall values.

The F-Score obtained with features from sensors was the same across all algorithms tested and

considerably higher than the F-Score obtained only with tests scores and personal metrics (91-

93% against 50-72%).

6.3 Discussion and Conclusion

Previous studies from Scott et al. (2007) have compared the accuracy of several functional tests

and fall risk tools to differentiate groups with different levels of fall risk. Despite the differences

in protocol and population analyzed (only for community settings and validated in a prospective

study), similar accuracy and sensitivity were reported. Murphy et al. (2003) concluded that ‘floor

transfer’ and ‘50 ft walk’ tests combined can discriminate fallers from non-fallers with an overall

accuracy of 96% (82% sensitivity and 100% specificity).

A similar study from Liu et al. (2011) has used metrics from instrumented TUG, alternate step

test and 5 times STS to classify between fallers and non-fallers and the best models have achieved

70% accuracy (68% sensitivity and 73% specificity).

The objective of this study was to compare the performance of functional test scores and

features obtained from inertial sensors and pressure platforms to discriminate between groups of

low and high risk of fall. A fall level was defined based on the history of falls and usage of walking

aid and was used as label in classification and regression algorithms. Only subjects who performed

the three functional tests (TUG, STS, and 4-stage) were included in this study.
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The association between functional test scores and fear of falling with fall level are not random

(Fisher’s exact test p-value < 0.05), concluding that individuals with functional disabilities and

fear of falling have greater odds of having a higher fall level than individuals without physical

disabilities and without fear of falling. Moreover, when comparing personal metrics with fall

level, it was concluded for some personal metrics that random association with fall level cannot

be excluded.

The differentiation power of personal metrics and test scores was considerably different when

tested with classification and regression methods. Accuracies above 80% were obtained for all al-

gorithms. Naïve Bayes outperforms with an accuracy of 84.82% (74.58% of precision and 71.19%

of recall).

However, features from inertial sensors and pressure platform obtained better results for the

same algorithms than only test scores. Naïve Bayes classifier obtained an accuracy of 87.16%

(88.18% of precision and 97.50% of recall).

These results support the conclusion that instrumentation of fall risk assessment tests with

inertial sensors and pressure platform could better discriminate the individuals at a higher risk of

falling.
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Falls are among the frequent causes of the loss of mobility and independence in the elderly

population. Given the global population aging, new strategies for predicting falls are required to

reduce the number of their occurrences. In this study, a multifactorial screening protocol was ap-

plied to 281 community-dwelling adults aged over 65, and their 12-month prospective falls were

annotated. Clinical and self-reported data, along with data from instrumented functional tests,

involving inertial sensors and a pressure platform, were fused using early, late, and slow fusion

approaches. For the early and late fusion, a classification pipeline was designed employing strati-

fied sampling for the generation of the training and test sets. Grid search with cross-validation was

used to optimize a set of feature selectors and classifiers. According to the slow fusion approach,

each data source was mixed in the middle layers of a multilayer perceptron. The three studied

fusion approaches yielded similar results for the majority of the metrics. However, if recall is con-

sidered to be more important than specificity, then the result of the late fusion approach providing

a recall of 78.6% is better compared with the results achieved by the other two approaches.
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The main contributions of this study are the following: i) the use of multimodal data col-

lected according to a multifactorial screening protocol for predicting falls; ii) the richness of the

collected data allowing to infer not only functional capabilities of a person but also clinical and

environmental information; and iii) the exploration of different fusion approaches (Figure 7.1).

Figure 7.1: Graphical representation of the main contributions of the study: multifactorial fall risk
screening, data fusion and modeling.

7.1 Methodology

7.1.1 Data collection

7.1.1.1 Subjects

Four hundred and three Portuguese community-dwelling adults aged over 50 (mean age of 69.69

± 10.31; 70% women) were recruited from parish councils, physical therapy clinics, senior’s uni-

versities, and other community facilities. The inclusion criterion was the ability to independently

stand and walk with or without walking aids. The excluding criterion was the presence of severe

sensory (deafness or blindness) or cognitive impairments (Martins et al., 2018). Only adults aged

over 65 were considered for the analysis given that many previous studies used this age as a thresh-

old for patient recruitment. The sample used in this study consisted of 281 subjects. The research

was approved by the Ethics Committee at the Polytechnic Institute of Coimbra (No6/2017). All

participants gave their written informed consent before the data collection in accordance with the

principles of the Declaration of Helsinki (Martins et al., 2018).
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7.1.1.2 Protocol

A multifactorial screening protocol for assessing the risk of falls in community-dwelling adults

was defined based on relevant literature. The protocol included demographic and anthropometric

data; lifestyle and health behavior data; six functional tests (handgrip strength test, TUG test, 30s

STS, Step test (Step), “modified” 4-Stage Balance test (4Stage), and 10-m walking speed test (10

Meter Walk) instrumented with inertial sensors and a pressure platform); and questionnaires about

environmental home hazards, activity and participation profile related to mobility, and self-efficacy

to exercise (Martins et al., 2018).

7.1.1.3 Data sources

Several types of data were collected:

• Clinical data, including demographic, anthropometric and data such as place of residence,

age, sex, medical conditions, and medications taken, as well as functional tests outcomes,

such as test timing, number of repetitions, and grip strength.

• Self-reported data from questionnaires, such as home hazards, previous number of falls, and

fear of falling;

• Three-dimensional (3D) time series extracted from the 3D accelerometer and 3D gyroscope

used in the functional tests, including the time to stand and average acceleration along x, y,

and z axes.

• Two-dimensional (2D) time series extracted from the pressure platform used in the func-

tional tests, including the center of pressure oscillation in the mediolateral and anteroposte-

rior directions.

Clinical and self-reported data were combined to form one data source named the personal

data.

7.1.1.4 Prospective falls after 12 months

The participants were followed for 12 months via monthly phone calls. "The rate of falls was

recorded from the day of inclusion until voluntary dropout, loss of phone contact or the end of

the follow-up period" (Martins et al., 2018). The participants who reported at least one fall in the

12-month follow-up period were categorized as fallers, whereas those who did not report any falls

during this period were categorized as non-fallers. The incidence of fallers in the study sample

was 26.3%, which is in accordance with the literature reporting that approximately one-third of

people over 65 will fall each year (Howcroft et al., 2013).
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Table 7.1: Features extracted from clinical reports, self-reported, inertial, and pressure platform
data.

Source Features extracted
Clinical data
Martins et al.
(2018)

sex, age, height, weight, dwelling place, benzodiazepines, antidepres-
sants, anti-psychotic, anti-inflammatory analgesics, anti-hypertensive, to-
tal medication,+ 4 medicines daily, STS score, TUG score, 4Stage score,
Step score, 10m-Walk score

Self-reported
data Martins
et al. (2018)

retrospective falls, prospective falls, fear of falling, live alone, sedentary
lifestyle, assistive device, upper extremities assistance to stand, home
risks, not applicable home risks, items answered, risk home entrance, risk
stairs out, risk stairs in, risk living areas, risk kitchen, risk bathroom, risk
bedroom, risk outdoor, index of home risk, index of home risk percent-
age, self-efficacy score

Inertial sensors
Silva et al.
(2017)

mean, median, max, min, rms, std dev, median dev, iqr, min avg, max
avg, peak height, avg peak height, mean cross count, fft max freq, fft
max amp, energy, entropy, skewness, kurtosis, walking steps, walking
variability, walking speed, STS power, time to stand

Pressure plat-
form Silva et al.
(2017)

sway velocity, sway range, sum oscillation, std oscillation, area ellipse,
transfer time, left foot force, right foot force, left foot higher pressure
zone, right foot higher pressure zone, rising index, weight symmetry

max: maximum, min: minimum, rms: root mean square, std dev: standard deviation, iqr:
interquartile range, avg: average, fft: fast fourier transform, freq: frequency, amp: ampli-
tude.

7.1.2 Feature extraction

During the walking tests (i.e., TUG and 10 Meter Walk), two wearable inertial sensors (AICOS,

2016), were placed on the lower back and ankle of the support leg. The sensors were sampled at 50

Hz. For the static tests (i.e., STS Step, and 4Stage) the PhysioSensing pressure platform (Sensing

Future Technologies, 2018) sampled at 50 Hz was used in addition to the two inertial sensors.

The hand-grip strength was assessed using a Jamar hydraulic hand dynamometer (Martins et al.,

2018). Each functional test was divided into phases, e.g., 4Stage was divided into seven balance

positions. Several features, as detailed in Table 7.1, were extracted from the four sources of data,

i.e., clinical, self-reported, inertial sensor, and pressure platform data. Overall, 230 features were

extracted.

7.1.2.1 Inertial sensors

An analysis and segmentation of the TUG test involving inertial sensors were previously reported

by Silva and Sousa (2016). Later on, Silva et al. (2017) presented an analysis of the TUG, STS, and

4Stage tests performed with inertial sensors and a pressure platform, reporting a feature extraction

process for both types of sensors. We adopted the analysis procedures reported in these studies.

Our analysis of the 10 Meter Walk test was based on a previous work by Aguiar et al. (2014b).
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The inertial features presented in Table 7.1 were extracted from the magnitude of the accelerometer

signal.

7.1.2.2 Pressure platform

For the Step test, the number of steps was segmented based on the information provided by the

pressure platform when a subject raised the leg. If a variation in the number of active cells was

detected compared with the initial bipodal position, a step was identified. As the leg was lowered

toward the pressure platform, the number of active cells increased, and the end of the segmentation

phase was reached. The pressure platform features extracted for the Step and STS tests were the

same as previously described for the STS test (Silva et al., 2017).

7.1.3 Classification pipeline

7.1.3.1 Data profiling

First, nominal data, such as therapist id, patient id, local id, were removed from the feature vector,

and the remaining variables were converted to numerical values. The clinical and self-reported

data were converted to numerical values using categorical/dichotomous variables when appropri-

ate. Then, data profiling was performed, and the features with a correlation coefficient above 0.90

were removed. A statistical description of the database was achieved by depicting grouping vari-

ables such as the last year falls, follow-up falls, need of walking aid, and need of assistance to

stand up in scatter and box plots. We performed an independent samples t-test on each grouping

variable, with 95% confidence level. A segmentation of the database for each type of the data

source, i.e., personal data (comprising the clinical and self-reported data), inertial sensor data, and

pressure platform data, was also considered for testing different fusion approaches.

7.1.3.2 Feature preprocessing

Several feature preprocessing methods were employed, mainly for dealing with missing values.

As 28 participants were unable to perform at least one of the functional tests due to physical lim-

itations, the data from these tests had missing values. Moreover, missing values were present

when participants were unable to reach the last positions among the seven balance positions of the

4Stage test. The last position of the 4Stage test had 80% missing values. The missing values for

the remaining features accounted on average for 5.8 ± 11.8% of all values. Due to time constraints

during the data collection, the database also contained some missing answers for participants who

filled in the questionnaire. Since the inability to accomplish a functional test could yield valuable

information related to functional capabilities, the missing values in such cases were replaced by

zero. Removing the participants with missing values would have resulted in a significant reduc-

tion of the sample dimension, preventing from accurately representing the target population. All

features were normalized by removing the mean and scaling to the unit variance.
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7.1.3.3 Data fusion approaches

Three approaches to data fusion could be considered using the collected dataset: 1) data-level

fusion, i.e., combining the data obtained from the inertial sensors and pressure platform to extract

features resulting from the joint analysis of both signals; 2) feature-level fusion, i.e., extracting fea-

tures from the three data sources separately and combining all features in the same feature vector;

and 3) decision-level fusion, i.e., training a model for each data source and combining the predic-

tions of all models. In our study, we experimented with three different data fusion approaches.

The first approach, called early fusion, involves fusing data after the feature extraction stage and

before the classification stage (i.e., feature-level fusion). The second approach, called late fusion,

involves fusing data after the classification stage (i.e., decision-level fusion). Finally, the third

approach, called slow fusion is based on the combination of the first two approaches. In particular,

it gradually fuses multisource information in a multilayer perceptron (MLP), in such a way that

higher layers of the network are provided with progressively more information (Karpathya et al.,

2014).

The late fusion approach uses the majority voting mechanism, where the predicted class label

for a specific instance is assigned based on the class label predicted by the majority of individual

classifiers. The slow fusion approach combines the information of each data source in the middle

layers of a neural network (Fig. 7.2). For the implementation of the slow fusion approach, we

employed the Keras library to train a multi-input sequential model, receiving three data sources in

a single network. For each data source, we combined three feedforward fully connected (dense)

layers with the ReLu activation function, intercalated with dropout layers, and with a sequential

decrease in the number of layers’ nodes. The last layers of each model were concatenated in a

stack of two dense layers with sigmoid activation. This model was optimized using binary cross

entropy loss and Adam optimization.

Figure 7.2: Early, late, and slow fusion approaches for combining personal, inertial sensor, and
pressure platform data, for fall prediction.
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7.1.3.4 Classification pipeline

A randomly stratified train-test split was performed 50 times to ensure the variability between train

and test splits, with 33% of the data being selected for the test set. Each split yielded a training set

of 188 samples (138 non-fallers, 50 fallers) and a test set of 93 samples (69 non-fallers, 24 fallers).

Using a grid search with cross-validation (CV) over the training set, a classification pipeline was

defined to optimize a range of parameters for the three stages: feature selection, classification, and

grid search scoring (Fig. 7.3).

For the feature selection, we optimized the number of components for principal component

analysis (PCA) and the threshold for the variance threshold method. For the classification stage,

we optimized the following hyperparameters of each of the considered classifiers: the variable k

and search algorithm of the k-Nearest Neighbors (k-NN) classifier; the maximum depth, number

of estimators, and minimum samples to split for the Decision Tree and Random Forest classifiers;

and the solver and maximum number of iterations for the Logistic Regression (LogReg) classifier.

For the grid search scoring, we considered precision, recall, AUC, F1-score, and accuracy.

Since the incidence of fallers in the database was only 26.33%, we applied an oversampling

procedure, namely, the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al.,

2002), to the training set employed in the grid search. In particular, the SMOTE was used to

oversample the minority class in the feature space. In this way, the minority class was oversampled

by creating synthetic examples rather than oversampling with replacement.

Figure 7.3: Classification pipeline for optimizing the feature selector, classifiers, and scoring func-
tion; grid search with CV is applied to the training set, whereas results are reported for the test
set.

7.1.3.5 Validation

Since the grid search was performed over 50 partitions of the dataset and for the three stages of

the pipeline, we obtained several combinations of parameters evaluated with different partitions of

the initial dataset. We decided to present the mean and standard deviation across the 50 iterations
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for each tested classifier combined with different feature selection methods, estimator’s hyperpa-

rameters, and grid search optimization scores. We report the obtained accuracy, AUC, F1-score,

precision, recall, and specificity. To compare the performance metrics across the different fusion

approaches, we used ANOVA multiple comparison analysis testing. As a post-hoc test, we applied

Tukey’s Honest Significant Difference Test (HSDT) with 95% confidence level to all possible pairs

among the three data fusion methods.

7.2 Results

7.2.1 Descriptive characteristics

7.2.1.1 Demographic and anthropometric information

A total of 281 older people aged over 65 were included in this study. Out of them, 65% were

female, 74% were community-dwelling, and 17% used a walking aid. Participants were 75.1 ±
6.9 years old, 160 ± 7.9 cm tall and weighed 72.1 ± 11.1 kg.

7.2.1.2 Retrospective and prospective falls

Out of the 281 participants, 94 (33.5%) reported at least one fall in the previous year and 74

subjects (26.3%) experienced at least one fall during the 1-year follow-up. Among the 94 subjects

that reported previous falls, 35 fell during the follow-up period.

7.2.1.3 Self-reported questionnaires

Self-reported questionnaires revealed that 38.8% of the participants required an upper extremity

assistance to stand up from a chair. Among all participants, 35.6% reported living alone, 69%

reported taking more than four medicines daily, and 50.5% reported having a sedentary lifestyle.

When asked if they were afraid of falling, 52.7% answered affirmatively.

7.2.1.4 Functional tests scores

The majority of the subjects (253 out of 281) were able to complete all functional tests. Out of the

281 subjects, 13 subjects did not perform the TUG test, 14 subjects were unable to complete the

Step test, and 17 subjects were unable to do the 30s STS test. Only eight subjects were unable to

perform any standing position of the 4Stage test, whereas all participants completed the 10 Meter

Walk test. Data from the subjects who were only capable of performing one or two tests were still

considered for analysis.

7.2.1.5 Individual predictive value

We performed a statistical analysis of the individual predictive value of each feature for the pre-

diction of 12 months prospective falls. The differences in the functional test scores between fallers
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and non-fallers were not statistically significant (p-value>0.05). The difference between the two

groups was statistically significant for the features highlighted in bold in Table 7.1.

7.2.2 No data fusion - individual data sources

The classification performance metrics using each data source individually were retrieved from

the inner loop of the late fusion approach to access the predictive value of each data source. The

results were grouped by the data source, feature selector, classifier, and grid search score. The

average results for the 50 test sets were computed, and the highest recall values were retrieved as

listed in Table 7.2.

Table 7.2: Average results for each data source (mean and standard deviation of the 50 test sets, in
%).

Source Personal Inertial Platform
Selector PCA PCA PCA
Model Decision Tree Decision Tree Log Reg
Score Recall Recall Recall

Accuracy 40.5 ± 10.2 40.0 ± 7.8 39.8 ± 6.9
AUC 47.8 ± 4.8I 50.5 ± 3.7S 49.8 ± 4.4

F1-score 34.0 ± 7.9I,P 38.0 ± 3.9S 37.1 ± 5.6S

Precision 23.8 ± 4.9I,P 26.1 ± 2.1S 25.5 ± 3.1S

Recall 62.9 ± 22.9I 72.2 ± 15.1S 70.6 ± 16.6
Specificity 32.7 ± 20.6 28.8 ± 14.8 29.1 ± 13.7
S: sig. different from personal; I: sig. different from
inertial; P: sig. different from platform

According to Tukey’s HSDT performed for the single-step multiple comparison between the

data sources, the averages of the accuracy and specificity were not significantly different across

all data sources. For the AUC and recall, only the average of the personal data was significantly

different from that of the inertial data. For the F1-score and precision, only the averages of the

personal data were significantly different from that of the inertial and platform data.

7.2.3 Early, late, and slow fusion approaches

The same classification pipeline was employed for the early and late fusion approaches. For the

early fusion approach, we used a combined feature vector with information from the three sources

of data and ran it through the classification pipeline illustrated in Fig. 7.3. For the late fusion

approach, the data were split into inertial, pressure platform, and a combination of clinical and self-

reported data. The pipeline shown in Fig. 7.3 was optimized using each source of data individually

and then the best estimator for each source of data was combined using voting classification.

Finally, the evaluation using the test set was performed.
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7.2.3.1 Early fusion approach

According to the early data fusion approach, clinical, self-reported, and multisensor data were

fused using feature fusion prior to the classification pipeline. In addition to the clinical and self-

reported data retrieved mainly from questionnaires (categorical data) and measured variables (e.g.,

timed tests or anthropometric characteristics), we employed features engineered from the raw sig-

nals of the inertial sensors and pressure platform. The initial analysis was performed individu-

ally for each type of sensor data. After retrieving features from the inertial sensor and pressure

platform signals, they were combined in a unified feature vector together with clinical and self-

reported data. This feature vector was then used for the optimization of the grid search pipeline

and for retrieval of the best estimator. The resulting feature vector included 229 features extracted

from the three data sources for 281 participants (aged over 65). The results were grouped by the

data source, feature selector, classifier, and grid search score. The average results for the 50 test

sets were computed and the highest recall values were retrieved as listed in Table 7.3. The best

combination was PCA, Decision Tree, and recall as the grid search score function.

7.2.3.2 Late fusion approach

In the case of the late fusion approach, the same procedure as described for the early fusion was

applied; however individual data sources were used in this case. We combined the predictions

of three different estimators (based on individual inertial, pressure platform, and clinical/self-

reported data) using a voting classifier. The feature vector constructed based on the inertial data

comprised 125 features. In addition, we extracted 59 features from the pressure platform data

and 44 features from the clinical/self-reported data. The model selection method was the same as

described for the early fusion. The best combination was PCA, Decision Tree, and recall as the

grid search score (Table 7.3).

7.2.3.3 Slow fusion approach

The slow fusion approach slows the process of fusing estimations by using a MLP to combine

multiple data sources. In this case, we mixed information from each data source in the middle

layers of the MLP, where the output from each individual stack of layers for each data source was

concatenated in the last layers of the MLP. The three branches operated independently from each

other until they were concatenated. In this way, we designed a network with three inputs and one

output. The average results for the 50 partitions of the dataset are reported in Table 7.3.

According to the Tukey’s HSDT performed for the single-step multiple comparisons between

the fusion methods, the averages of the AUC and precision were not significantly different across

the fusion methods. For the remaining performance metrics (accuracy, F1-score, recall and speci-

ficity), only the difference between the averages of the early and late fusion approaches was not

significantly different.
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Table 7.3: Average results for early, late, and slow fusion (mean and standard deviation of the 50
test sets, in %).

Fusion Early fusion Late Fusion Slow Fusion
Selector PCA PCA n.a.
Model Decision Tree Decision Tree MLP
Score Recall Recall Cross Entropy

Accuracy 35.8 ± 10.3S 37.0 ± 9.8S 59.2 ± 4.8
AUC 49.5 ± 3.9 50.5 ± 4.3 50.3 ± 4.4

F1-score 37.1 ± 7.5S 38.2 ± 6.0S 28.5 ± 6.4
Precision 25.2 ± 5.1 26.2 ± 3.2 26.3 ± 5.9

Recall 77.8 ± 24.1S 78.6 ± 22.2S 31.8 ± 8.5
Specificity 21.2 ± 21.6S 22.5 ± 19.9S 68.7 ± 6.9
S: statistically significant different from slow

7.3 Discussion and Conclusion

We tested three approaches for multisource data fusion, namely, early, late, and slow fusion, using

the procedure illustrated in Fig. 7.2. We investigated the impact of fusing data at different stages

of the pipeline on the obtained results. In this study looking at predicting falls in elderly, similar

results were found for the majority of the considered performance metrics. Nevertheless, it should

be noted that the late and slow fusion approaches can provide a set of advantages regarding the

deployment of a prediction system. For example, a system capable of dealing with fewer sources

of information can be designed and trained when a certain data source is not available. Moreover,

we found that recall was more important than specificity, for the predictive system considered in

this study, since the fall risk screening was used to select elderly with a higher risk of fall that

should be considered for fall prevention. It would be preferable to minimize the error of losing a

potential faller (i.e., maximizing recall) instead of losing a potential non-faller (i.e., maximizing

specificity). This rationale was used to select the best models among all possible combinations in

the optimization pipeline.

We compared each data source, regarding their predictive value individually. The inertial and

platform data alone revealed a higher F1-score and precision compared with those of the personal

data. Furthermore, the inertial data alone allowed to achieve a higher AUC and recall compared

with those obtained when considering only the personal data. These results reinforce the added

value of sensor instrumentation in fall risk screening protocols.

The average results obtained for the early and late fusion approaches were not statistically dif-

ferent from each other, which may indicate that the different data sources were highly correlated.

The early fusion approach can be preferred given its lower computational requirements. The slow

fusion approach obtained a higher accuracy score but a lower F1-score. The standard deviation of

all scores achieved by this fusion approach was lower compared with those of the other approaches

because the pipeline for slow fusion was only optimized for one loss function. By optimizing for

cross-entropy, the model with slow fusion retrieved a higher specificity and lower recall compared

with the early and late fusion approaches. The slow fusion approach can also be useful in scenarios
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where specificity is more important than recall.

To the best of our knowledge, no previously published work has attempted to study different

approaches to data fusion using multiple sources of data for prospective fall prediction. However,

we found one previous work that reported a late fusion approach with clinical and inertial data

for retrospective fall prediction validated using nested CV (Greene et al., 2018). The authors

reported a significant added value of data fusion compared with analyzing individual data sources.

The majority of previous studies report the use of a combination of personal (clinical and self-

reported) data and one source of sensor data (either inertial sensors, pressure platform, or other

types of sensor-based data) in an early fusion approach.

Furthermore, the classification and validation pipeline used in this study covers different stages

of optimization. We reported the results for a test set that was not used during the training of the

proposed grid search pipeline. The lack of an external test set, which is considered to be essential

for the evaluation of trained models to avoid overfitting, has been considered as one of the main

disadvantages of previous studies (Howcroft et al., 2013). Moreover, few studies have used neural

networks for the prediction of falls or employed slow fusion approaches, which are more common

for video classification (Karpathya et al., 2014).

Providing the results of this study, as our future work we consider studying different methods

for feature processing and training different types of classifiers that are more suitable for each data

source. Furthermore, it is possible that the nature of falls is not completely covered by the screen-

ing protocol used in this study. For example, once an elderly person with poor functional capabil-

ities and clinical history of associated fall risk factors is institutionalized, the falling probability is

reduced due to the resulting movement restriction. Adding strategies for data preprocessing and

variables that better describe the unexpected nature of fall occurrences should be considered.
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Chapter 8

Introduction

8.1 Automatic detection of falls

Among the elderly population, falls are one of the most common causes of death and injury. More

than 30% of people over 65 years old fall each year and the prevalence increases for people above

80 years old (WHO, 2007). Even a minor fall can severely affect the physical and mental health of

an elder due to the fear of falling again. Thus, the elderly quality of life and of their carers can be

affected (Age UK. Stop Falling, 2013). Besides the social and personal effects, falls also play an

important role in healthcare costs. For instance, in 2015 the direct costs for fatal and nonfatal fall

injuries were 637.5 million and 31.3 billion dollars respectively (Burns et al., 2016). Some studies

have made some relevant developments on fall prediction through gait stability assessment. van

Schooten et al. (2016) performed a study using wearable sensors to analyze the relation between

common gait characteristics and the time to the next fall. Their findings reveal that with the daily

measurement of these gait characteristics it is possible to assess the elderly risk of falling. Our

previous study (Silva et al., 2020) provides a comparison between different data fusion approaches

for fall prediction based on prospective falls. Although these systems can contribute to preventing

falls, the occurrence of falls is not only dependent on the physical stability of the individuals but

also on external perturbations such as, for instance, home hazards in the involving environment

(Bruijn et al., 2013) or weather conditions. For this reason, the occurrence of falls is not always

predictable. Therefore, it urges to be able to detect the falls at the moment they occur. Earlier

detection of a fall will allow a faster intervention, decreasing the severity of injuries and, in some

cases, avoiding deaths (Noury et al., 2007). Therefore, in the past years, the scientific community

is making an effort in order to develop systems for automatic fall detection (Pannurat et al., 2014).

8.2 Related Studies

According to a recent review (Ren and Peng, 2019) of fall detection systems, the taxonomy of these

systems can be divided into context-based and wearable-based systems. Context-based systems

can sense and process data from the environment where the sensing device is integrated, instead of
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using a device attached to the person. Examples of context-based systems are pressure platforms,

cameras, acoustic and infrared sensors (Chaccour et al., 2017). Most wearable-based systems

resort to the analysis of inertial sensors to detect falls. However, there are also systems that rely on

sensor fusion, ranging from the fusion of inertial sensors to a combination of these sensors with

barometer, microphone, heart rate sensors or cameras. Wang et al. (2016), for example, combined

accelerometer and barometric information in a fall detector with low-power consumption.

The main problem with ambient devices and vision-based systems is the restriction of its use

to the room where the sensors/cameras are placed. Additionally, they usually require compli-

cated installation and setup when compared with wearable sensor-based systems (Mubashir et al.,

2013). Smartphones’ embedded sensors have also been used for fall detection (Aguiar et al.,

2014a; Shahza and Kim, 2019), however, in some situations, they are not carried by the user or

placed in the user’s clothes, which will disable this specific function. Therefore, approaches based

on wearable sensors, even though being more intrusive and less accurate (Mubashir et al., 2013),

emerge as a potential solution to overcome these problems. As reported in (Schwickert et al.,

2013) many proposals involving wearable sensors have been studied with the aim of solving the

problem of automatic fall detection. The performance reported in such studies depends on sev-

eral variables, for instance, the type of algorithm used, type of sensor, number of sensors, sensor

position, and type of data used for training.

8.2.1 Falls datasets

Prior reported methods used accelerometer signal processing for the development of a supervised

algorithm for fall detection with a dataset of simulated falls and activities of daily living (ADLs)

considered as non-falls, acquired from young volunteers (Casilari et al., 2017a). The occurrence

of a fall event is very rare, compared to the number of daily living activities, and the annotation

process involved in creating a real-world falls dataset is very time and resource consuming, which

makes the availability of such datasets extremely scarce. Even though, there are some research

groups that have managed to collect data from real-world falls (Klenk et al., 2016).

Fall detection has been tackled with devices such as cameras, floor pressure sensors, infrared

sensors, inertial sensors, heart rate sensors, and microphones. Most of the approaches based on

wearable devices rely on inertial sensors to discriminate between falls and ADLs. Moreover, a

high percentage of these studies have used datasets of simulated falls to develop and validate the

fall detector. Previous studies on this topic have reported the comparison between accidental falls

in elderly and simulated falls of younger volunteers, such as Klenk et al. (2011), Kangas et al.

(2012) and Bourke et al. (2015). These studies concluded that the limitations of simulated falls

should be considered and the protocol should be adapted to better match real-world falls.

The fall detectors training should consider the imbalance in real and simulated datasets, by

employing imbalance learning methods on the train set and evaluate the trained models on imbal-

ance conditions that mimic real-world scenarios. Machine learning approaches have successfully

been applied to discriminate between falls and ADLs based on inertial sensors data. High sensi-

tivities and specificities have been achieved for simulated falls datasets, however the validation of
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these approaches has been questioned for real-world conditions (Lindemann et al., 2005)(Kangas

et al., 2012). More recently, Bourke et al. (2016) has reported that a decision tree classifier trained

with real-world falls is capable to discriminate between falls from ADLs with accuracy compa-

rable with previous studies that used simulated falls datasets. However, a hybrid approach that

considers both simulated and real-world falls for the development and validation of a fall detector

could be of utmost interest, given that real-world falls datasets are rare and difficult to achieve be-

cause the limited number of available samples could impact the development of machine learning

algorithms. Given that young volunteers have potentially more false positives than more seden-

tary older volunteers, non-fall events acquired from young volunteers should also be incorporated

in the validation datasets. The FARSEEING real-world dataset was acquired from hospitalized

patients, which may not be representative of a broad population. This way, the combination of

this real-world dataset with simulated non-falls events could enrich the validation set, since more

diverse data is used to validate the models.

The naive use of real data in models learned from simulated data may face difficulties due to

the differences between both settings. However, the use of domain adaptation or transfer learning

techniques has the potential to leverage the benefits of both.

Techniques of data augmentation have been used with these real falls in some studies. How-

ever, these methodologies can introduce some bias in the results (Khan and Hoey, 2017). There-

fore, most of the studies presented in the literature have been using simulated fall data in order

to train the algorithms. Some studies have reported significant differences in the simulated falls

when compared with real falls data (Klenk et al., 2011), however, some have found that several

characteristics are common between both types of falls (Kangas et al., 2012).

8.2.2 Wearable-embedded solutions

Most of the fall detection algorithms developed for wearable devices are based on simulated data

acquired from a single (Kangas et al., 2012, 2009; Pannurat et al., 2017; Sucerquia et al., 2018)

or multiple accelerometer sensors (Özdemir and Barshan, 2014). Often multiple inertial sensors

are used, for instance, the combination of gyroscope and accelerometer (Li et al., 2009; Huynh

et al., 2015) or accelerometer and barometer (Wang et al., 2016). Regarding the type of algorithm,

works vary from the most simple threshold-based algorithms (Kangas et al., 2012, 2009; Pannurat

et al., 2017; Bourke et al., 2010) to machine learning algorithms (Özdemir and Barshan, 2014;

Ozdemir, 2016). As the number of wearable’s sensors and algorithm complexity increases, more

processing power will be required in order to execute the algorithm. This can be achieved with

more powerful and expensive devices or by streaming the data to a more capable device, like a

smartphone or computer, to process the data (Pannurat et al., 2017). However, in this case the

need to always carry the smartphone is not eliminated (Aguiar et al., 2014a; Shahza and Kim,

2019). Also, the use of various sensors can be uncomfortable for the subject. There is a need of a

single body-worn unit with inertial sensors that can be carried everywhere and used in most daily

situations (Mubashir et al., 2013).
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The review by Schwickert et al. (2013) concluded that there is no consensual position where

the sensor should be placed in order to achieve the better fall detection rate. The most used

positions are usually the waist (Kangas et al., 2009; Sucerquia et al., 2018; Bourke et al., 2010),

hip and trunk (Pannurat et al., 2017). Some studies compared the performance of their algorithms

for different positions. Kangas et al. (2008) compared the performance of the algorithm in three

body positions: wrist, waist and head. They concluded that the head and waist would be the most

suitable positions. Furthermore, Gjoreski et al. (2011) studied the best accelerometer placement

for posture recognition and fall detection and concluded that both waist and chest positions had

the best performance among waist, chest, thigh, and ankle. However, similarly to the smartphone,

sometimes the sensors cannot be placed in a specific position due to the user’s health condition

or acceptability. Pannurat et al. (2017) have tackled this problem by developing an algorithm that

works in several positions of the body such as the head, upper arm, wrist, ankle, chest, waist and

thigh. However, this algorithm requires a calibration step for the position where the sensor will

be used, and an external computer to perform the algorithm computation. If the person wants to

change the position of the sensor, a new calibration step is always required. Since the user may

not be an expert, the calibration step might be performed wrongly and this may hinder the proper

functioning of the system.

8.2.3 Impact of models’ requirements

Fall detection systems have been a trend research topic over the past years, motivated by the

damaging impact of fall events in the quality of life, especially of the elder, and the importance

of prompt assistance to minimize their consequences. Among the variety of available solutions,

wearable-based systems, relying on ubiquitous equipment (e.g. smartphone, smartwatch, fitness

trackers) to enable pervasive monitoring of users’ motion parameters, are some of the most com-

mon. As such, there is a tendency to generate multiple fall detection solutions adapted to each

different use case and shaped by each system’s hardware limitations. This leads to an overflow

of custom-made systems built upon similar methodologies but fine-tuned to particular objectives,

constraints or even target populations.

Common examples of specific requirements and constraints are related to the wearable de-

sign, such as the place of usage, the way it can be attached to the body; the device’s processing

capability, memory and battery; or limitations in the accelerometer sampling rate. Fall detection

systems’ fine-tuning implies the collection of a significant amount of data examples, in conditions

as similar as possible to those of the intended use, to train and test a new fall detection model.

Hardware specifications may also influence the choice of the modeling approach and adaptations

in the implementation of the model may be required. In summary, adjusting multiple fall detection

solutions is a time and effort consuming process.

Regardless of the data source, the most common data analysis algorithms in the state-of-the-art

can be divided into three main groups: threshold-based algorithms, binary or multiclass machine

learning supervised algorithms and one class classification or novelty detection algorithms. The

threshold-based approaches are simple algorithms that trigger a fall alarm when the sensor values
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exceed certain predefined thresholds or a set of rules. Contrarily, machine learning approaches

based on pattern recognition are more complex and sophisticated compared to threshold-based

approaches. In novelty detection algorithms only data from daily life movements are used for

training, and falls are detected as outliers.

Fall detection systems are usually trained and evaluated in simulated scenarios, given the dif-

ficulty of acquiring data from real-world falls. There are also research studies that attempted

to collect data from real falls in uncontrolled settings; however, fall events are very rare and its

respective number of samples is frequently insufficient to train robust supervised models, as in

the two datasets used in the work of Aziz et al. (2017). Most previous works have acquired data

from simulated falls and ADLs. Besides acquiring scripted samples in laboratory conditions, other

studies have focused on acquiring and evaluating the trained models in free-living scenarios, from

continuous usage of the wearable devices. Nevertheless, fall detection is usually an unbalanced

problem, with a higher percentage of non-falls compared to falls in most prior works.

The system setup depends on several variables that could influence fall detection performance,

and there has been some effort in previous studies towards understanding the impact of the wear-

able device usage position and the sensors’ sampling rate. Intuitively, it is possible to acknowledge

that the wearable position can influence the type of movements that could be misinterpreted as a

fall, e.g. trunk, waist and pocket positions are expected to trigger fewer false alarms than the wrist,

given its higher number of degrees of freedom as in Ozdemir (2016) work. Santoyo-Ramón et al.

(2018) investigated the impact of number and positions of wearable sensors in fall detection. Their

findings suggest that the best usage positions for the wearable devices are the chest and/or waist.

On the other hand, the sampling rate has an impact on computational efficiency and battery life

of the system. Liu et al. (2018) studied this topic and tested several models with lower sampling

rates, and obtained 98% and 97% accuracy, with sampling rates of 11.6 and 5.8 Hz. In this sense,

position and rate are both important to consider at the design stage.

Some studies benchmarked their method with the publicly available UMAFall dataset (Casilari

et al., 2017b). Tsinganos and Skodras (2018) have extracted features from the accelerometer

magnitude, considering only the belt position. These features were used to train a k-NN classifier.

Their validation method was not user-independent, because they did not use leave-one-subject-out

(LOSO) validation, and achieved a F1-score of 96.7%. The work of Wisesa and Mahardika (2019)

revealed a F1-score of 97.4% using a Long Short-Term Memory (LSTM) model solely trained

with data from the X-axis of the accelerometer from the belt position. For validation of results, the

authors have divided the dataset into two static parts at random, disregarding user-independence;

thus, the obtained results are not only orientation-dependent, but may also be optimistic if aiming

real-world utilization with unseen users. The work of Barri Khojasteh et al. (2018) compared a

decision tree (DT) model with a feed-forward neural network (NN). The authors have validated

their models considering only the wrist position and applying a 5x2 cross-validation, which can

also be considered user-dependent. The DT slightly outperformed the NN model regarding the

geometric mean of sensitivity and specificity (DT - 92.4%; NN - 91.8%). The work of Wang et al.

(2018) was the only study found with evaluation with the UMAFall dataset using LOSO cross-
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validation. Their best approach combines data from accelerometer and gyroscope in a threshold-

based algorithm. The highest obtained results were 95.3% sensitivity and 81.5% specificity (i.e,

88% geometric mean), although the authors did not refer if all UMAFall dataset positions were

considered to evaluate their results.

8.3 Overview

Fall detection systems have been a trend research topic over the past years, motivated by the

damaging impact of fall events in the quality of life, especially of the elder, and the importance of

prompt assistance to minimize their consequences. Among the variety of available solutions, the

most common are wearable-based systems, which rely on ubiquitous equipment (e.g. smartphone,

smartwatch, fitness trackers) to enable pervasive monitoring of users’ motion parameters. As such,

there is a tendency to generate multiple fall detection solutions adapted to each different use case

and shaped by each system’s hardware limitations. This leads to an overflow of custom-made

systems built upon similar methodologies but fine-tuned to particular objectives, constraints or

even target populations.

Common examples of specific requirements and constraints are related to the wearable de-

sign, such as the place of usage, the way it can be attached to the body; the device’s processing

capability, memory, and battery; or limitations in the accelerometer sampling rate. Fall detection

systems’ fine-tuning implies the collection of a significant amount of data examples, in conditions

as similar as possible to those of the intended use, to train and test a new fall detection model.

Hardware specifications may also influence the choice of the modeling approach and adaptations

in the implementation of the model may be required. In summary, adjusting multiple fall detection

solutions is a time and effort consuming process.

In the next sections, we introduce several machine learning pipelines, trained with data from

a comprehensive proprietary AICOS dataset, to model and deploy custom-made fall detection

algorithms, based on which we will:

• Type of dataset: study the combination of simulated falls and real-world falls to improve the

performance of the models.

• Model complexity: take into account hardware constraints that require low computational

power features and algorithms for developing the fall detection algorithms. We have studied

threshold-based algorithms and ML algorithms. We have also compared traditional feature-

based models and deep learning models.

• Single vs. multiple on-body positions: compare models solely trained with data from sen-

sors placed on a certain body position and models trained with data acquired at multiple

positions. We also evaluated the generalization of those models for a new unseen position.

• Sampling rate: decrease the accelerometer sampling rate and evaluate the impact in fall

detection performance.
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Falls are very rare and extremely difficult to acquire in free-living conditions. Due to this,

most of the prior work on fall detection has focused on simulated datasets acquired in scenar-

ios that mimic the real-world context, however, the validation of systems trained with simulated

falls remains unclear. This work presents a transfer learning approach for combining a dataset of

simulated falls and non-falls, obtained from young volunteers, with the real-world FARSEEING

dataset, in order to train a set of supervised classifiers for discriminating between falls and non-

falls events. The objective is to analyze if a combination of simulated and real falls could enrich

the model. In the real-world, falls are a sporadic event, which results in imbalanced datasets. In

this work, several methods for imbalanced learning were employed: SMOTE, Balance Cascade

and Ranking models. The Balance Cascade obtained fewer misclassifications in the validation set.

There was an improvement when mixing the real falls and simulated non-falls compared to the

case when only simulated falls were used for training. When testing with a mixed set with real

falls and simulated non-falls, it is even more important to train with a mixed set. Moreover, it was

possible to conclude that a model trained with simulated falls generalize better when tested with

real falls than the opposite. The overall accuracy obtained for the combination of different datasets

were above 95%.
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9.1 Data acquisition and processing

9.1.1 Simulated falls dataset

Simulated falls and non-falls were collected in the laboratory facilities of Fraunhofer Portugal

AICOS (AICOS), using a smartphone inside the trousers’ pocket, following the protocol described

by Noury et al. (2007), adapted with additional non-fall activities. The dataset was collected from

7 volunteers that performed 8 types of falls (backward, forward, lateral falls) and 8 types of ADLs

(sit-to-stand and stand-to-lay transitions, walk, run, bend, drop phone on a table, walk and sit, sit

with rotations), repeated three times (Aguiar et al., 2014a). This dataset comprises 650 falls and

410 non-falls.

9.1.2 FARSEEING real-world fall database

In the scope of the FARSEEING project, a dataset with real falls were recorded from three differ-

ent wearable devices: MiniMod and Hybrid were located in the lower back, sampled at 100Hz, and

ActivPAL3 was placed on the thigh, sampled at 20Hz. The authors made available 22 accelerom-

eter files from a set of 100 files and 1908 sequences of ADLs (Klenk et al., 2016). Each person,

of a group of 15 persons, used a wearable device to collect falls and sequences of ADLs, at the

Geriatric Rehabilitation Unit in Robert Bosch Hospital, Stuttgart. The available dataset comprises

22 files with 20 minutes of wearable sensor data. From these files, 21 have only one fall event and

one file has two fall events (with a short duration of approximately 10 seconds). The sensor data

prior to the fall event were considered as non-fall events.

9.1.2.1 Resampling

From the 22 samples, 7 were collected at 20Hz and the remaining were collected at 100Hz. Orig-

inal files were resampled in order to uniformize the sampling frequency to 100Hz. First, the

timestamp was converted to seconds: an artificial timestamp was created for all files in order to

have unique timestamps. Second, the 20Hz files were upsampled to 100Hz to ensure concordance

with the remaining of the dataset. The method used to upsample was based on replicating samples

in order to have 100 samples in each second elapsed.

9.1.2.2 Segmentation

Centered in the timestamp of the fall (previously annotated by the FARSEEING group), a window

with 7.5 seconds was defined as the fall period. The non-fall period was considered as the period

until 10 seconds before the fall timestamp, yielding a total of 9 minutes and 50 seconds for the

non-fall period. Then, this period was sequentially divided into 7.5 seconds windows. Since the

number of samples of the non-fall period is considerably higher than the number of samples in the

fall period, several imbalanced learning approaches were used to overcome this difference.
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9.1.3 Comparison between datasets

Two datasets were used for the development and validation of fall detection approaches based

on machine learning techniques: a simulated dataset acquired by AICOS’s young volunteers in

simulated conditions and a set of FARSEEING real-world falls acquired with elderly patients in a

hospital. The major differences between the two datasets are different inertial sensors placement

(simulated falls were acquired with the smartphone on the trousers’ pocket and real falls were

acquired with wearable sensors on the lower back and thigh), different sampling rates (simulated

falls were acquired at 100Hz and some real falls were acquired at 20Hz), different inertial sensors

specifications concerning the accelerometer amplitude range (certain sensors involved in the real-

world data collection were limited to 2G range). In addition, the context of the fall is different: the

elderly do not stand in front of the mattress to fall as in simulated conditions. The acceleration of

the fall impact is also different since the impact is on the ground and not on the mattress.

9.2 Machine Learning Pipeline

9.2.1 Pipeline overview

Using Python’s scikit-learn package (v.0.19.1), a classification pipeline was designed:

• Input signal: the accelerometer magnitude was computed, at 100Hz. The signal was divided

into windows with 7.5 seconds (750 samples), without overlap. Windows with a low signal

standard deviation were removed, in order to discard samples where the signal was mainly

stationary, and were considered useless for the train and test sets.

• Feature extraction: a set of time-domain features were extracted for each time-window and

include mean, standard deviation, median, median deviation, maximum (max), minimum,

energy, root mean square (rms), inter quartile range (iqr), histogram (10 bins), skewness

and kurtosis (Aguiar et al., 2014a).

• Feature selection: features with a correlation higher than 0.90 were removed. The removed

features were energy, iqr, max, median, rms, yielding a feature vector with 16 features.

• Feature standardization: features were standardized by removing the mean and scaling to

unit variance, in order to ensure that all features are standard normally distributed.

• Train and test split: for the real-world dataset, there were 23 falls and 877 non-falls (after

removing stationary windows). The stratified split train and test, with 30% test size, was

used, which yield a train set with 630 samples (14 falls and 616 non-falls) and a test set with

270 samples (9 Falls and 261 non-falls).

• Supervised classifiers: Nearest Neighbors, Decision Tree, Random Forest, Multi-layer Per-

ceptron and AdaBoost.
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• Hyperparameters: of each classifier were optimized, within a given interval, using Grid

Search with 10 folds cross-validation, for the train set (630 samples). The stratified split

train and test, with 30% test size, was once more applied in order to divide the train set into

the train (9 falls and 413 non-falls) and the validation (5 falls and 203 non-falls) sets, for hy-

perparameters tuning. This process was repeated 40 times to ensure statistical significance.

9.2.2 Imbalance learning

A dataset is considered imbalanced when the classification classes are not approximately equally

represented. Often real-world datasets are mainly composed of normal events with only a small

percentage of abnormal or of interest events (Bowyer et al., 2011). For the real-world fall dataset,

the amount of non-fall events is considerably higher than the number of fall events (due to its

rare and sudden nature). To overcome the class imbalance, several approaches were considered,

in order to ensure that the imbalance dataset does not have an impact on performance of the

classifiers:

• Synthetic Minority Over-sampling Technique: (SMOTE) (Bowyer et al., 2011) was used to

oversample real-world samples in the train set. Using this approach, the minority class is

oversampled by creating “synthetic” examples rather than by oversampling with replace-

ment.

• Balance Cascade: creates an ensemble of balanced sets by iteratively undersample the im-

balanced dataset using an estimator (Liu et al., 2009). SMOTE and Balance Cascade are

implemented in Python’s imbalanced-learn (v.0.2.1) package (Lemaître et al., 2017).

• Ranking Models: were used for tackling class imbalance with ranking. Models tested with

features extracted from real-world falls were: Adaboost, Balanced linear SVC, Linear SVC,

Rankboost and Rank SVM (Cruz et al., 2016).

9.2.3 Transfer learning

We propose the use of domain adaptation/transfer learning techniques to cope with differences

between simulated and real falls datasets. For means of comparison with a setup that only uses

the real-world dataset, an initial test was made for training with real samples and test with real

samples.

Given that the real-world falls dataset is highly imbalanced, 23 falls and 877 non-falls, im-

balance methods were also applied in order to overcome this disproportion, namely the SMOTE

algorithm. Moreover, given that the real-world dataset was collected with hospitalized patients, it

could be expected that the activities the users undertook do not include high accelerometer varia-

tions, as expected when running or jumping or other activities with higher impacts. Due to this,

a dataset of simulated non-falls, that includes samples with high accelerometer variations, were

mixed with the real-world dataset (mixed set) in order to challenge the train and test sets (cases

1, 2 and 3). This approach was evaluated for three different cases: 1) train with a mixed set and
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test with real samples and 2) train with real samples and test with mixed set and 3) train with

mixed set and test with the remaining mixed set. These tests were meant to analyze the number

of false positives achieved on a mixed set when the model is trained only with real samples (case

2) or when the model is trained with a mixed set (case 3). The opposite was also tested in order

to assess the added value of training a model with a mixed set (case 1) comparatively to train only

with the real-world dataset (case 6). The latter two cases were also compared with the case of

training a model exclusively with simulated falls and non-falls and test it with real-world samples

(case 4) and the opposite (case 5).

9.3 Results

9.3.1 Imbalance learning

9.3.1.1 SMOTE

SMOTE was applied for each classifier, using a stratified train and test split for 40 splits. Overall,

the SMOTE algorithm obtained high accuracy for the set of five classifiers tested using a balanced

train set with 413 falls and 413 non-falls. When evaluated in an imbalanced validation set, the

MLP classifier had a higher area under the curve and achieved only one false positive and one

false negative.

9.3.1.2 Balance Cascade

Balance Cascade divided the dataset into 53 sets and the classifiers were trained for each set. The

model with the higher area under the curve was the MLP Classifier. Using the Balance Cascade,

the accuracy with the training set was also very high. Despite the Random Forest, all remaining

classifiers obtained accuracy, precision and recall above 90%. For the imbalanced test set, the best

trained model obtained only one false positive.

9.3.1.3 Ranking Models

Ranking models were trained for 10 sets using the stratified split. The trained model with the

highest area under the curve was evaluated with the test set. The results obtained for the ranking

models were even higher than for the latter cases, however, when evaluated with the test set, the

best model obtained a higher number of false positives (six non-falls were misclassified as falls).

9.3.2 Transfer learning

For the cases 1 and 6 (Table 9.1), when testing only with real data, if we include simulated non-

falls in the training (case 1), the number of false negatives (FN, actual falls predicted as non-falls)

will not change, as expected, however the number of false positives (FP, actual non-falls predicted

as falls) will increase because the train set has more variability and also more samples. Even

though, this model is expected to be more robust against potential non-falls events, since it was
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trained with non-falls simulated in conditions that usually trigger more false positives. Comparing

these two cases with case 4, when training only with simulated falls and testing with real falls,

there is an improvement when mixing the real and simulated falls (case 1) compared to the case

when only simulated falls were used for training (case 4).

For the cases 2 and 3, when testing with a mixed set with real falls and non-falls and simulated

non-falls, it is indeed more important to train with a mixed set (case 3) than train only with real

data (case 2), because less false positives were found. However, this model is also more prone to

false negatives. In order to conclude which combination is better, it should be considered the cost

of misclassifying a fall and the cost of detecting a false fall.

Comparing cases 4 and 5, it was possible to conclude that a model trained with simulated

falls (Simul.) generalizes better when tested with real falls (case 4), than the opposite (case 5), a

model trained with real falls and tested with simulated falls. Moreover, these two cases, that do

not include any mixed samples, were the ones with lower accuracy (Acc) (expecting for case 6),

highlighting the fact the mixing real and simulated non-falls improves the results.

Table 9.1: Transfer learning results for the combination of simulated and real falls (in %).

# Train Test Accuracy AUC Precision Recall FP FN
1 Mixed Real 96 97 99 96 21 0
2 Real Mixed 97 98 99 97 20 0
3 Mixed Mixed 99 67 99 99 1 4
4 Simul. Real 72 61 98 92 144 3
5 Real Simul. 71 66 71 71 73 20
6 Real Real 99 99 100 99 3 0

9.4 Conclusions

Detecting a fall in non-restricted nor simulated scenarios has been accomplished in most of the

past works using wearable inertial sensors. Comparatively to camera-based approaches, wearable

sensors avoid the need for environmental adaptations and fixed placement, allowing the monitored

device to follow the user continuously. Since fall events are very rare and extremely difficult

to acquire in free-living conditions, most of the prior work has focused on simulated datasets

acquired in scenarios that mimic the real context. Even though, the validation of the systems that

were trained with simulated falls remains unclear.

The approach presented combined two datasets: one with real falls and non-falls, from the

FARSEEING real-world dataset, and another with simulated falls and non-fall events, acquired

with younger and more active volunteers. Both datasets were used with different combinations

for training and validation, in order to obtain a fitted supervised classifier that better generalizes to

new fall events. In the real-world, falls are a sporadic and rare event, which results in imbalanced

datasets. In this work, several methods for imbalanced learning were employed, to deal with

this dataset, namely SMOTE algorithm, Balance Cascade and Ranking Models. Among the three
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approaches, the accuracies obtained for a set of different classifiers were very high, but the Balance

Cascade obtained fewer misclassifications in the test set.

Combined sets of simulated and real falls presented advantages compared to using only sim-

ulated falls. There is an improvement when mixing real falls and simulated non-falls compared

to the case when only simulated falls were used for training. When testing with a mixed set con-

taining real falls and simulated non-falls, it is indeed more important to train with a mixed set.

Moreover, it was possible to conclude that a model trained with simulated falls generalize better

when tested with real falls than the opposite. Compared to previous works that have used the

FARSEEING real-world dataset, the sensitivity obtained with this approach overcome the one ob-

tained by Bourke et al. (2016) using a decision tree classifier by 10%. Moreover, few samples of

falls were used in this work for train and test, highlighting the need to employ imbalance learning

and transfer learning approaches.
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on-Body Location

Adapted from J. Alves, J. Silva, E. Grifo, C. Resende, and I. Sousa,

Published in MDPI Sensors (Basel, Switzerland) vol. 19, 11 2426. May 2019.

Falls are one of the most common problems in the elderly population. Therefore, each year

more solutions for automatic fall detection are emerging. This study proposes a single accelerom-

eter algorithm for wearable devices that works for three different body locations: chest, waist, and

pocket, without a calibration step being required. This algorithm is able to be fully executed on a

wearable device and no external devices are necessary for data processing. Additionally, a study

of the accelerometer sampling rate, that allows the algorithm to achieve a better performance, was

performed. The algorithm was validated with a continuous dataset with daily living activities and

272 simulated falls. Considering the trade-off between sensitivity and the number of false alarms

the most suitable sampling rate found was 50 Hz. In conclusion, this study presents a reliable

solution for automatic fall detection that can be adapted to different usages and conditions, since

it can be used in different body locations and its sensitivity can be adapted to different subjects

according to their physical activity level.
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10.1 Materials and Methods

In this chapter the collection of datasets for training and validating the algorithm is described in

Section 10.1.1, followed by the definition of the fall detection algorithm, Section 10.1.2. Further-

more, a method to study the accelerometer sampling rate that best fits our algorithm is presented

in Section 10.1.3 and the algorithm optimization process is presented in Section 10.1.4.

10.1.1 Datasets

In order to train the proposed fall detection algorithm, 3 axial accelerometer data from simulated

falls and non-fall movements were collected. This dataset will be referred to in the remaining

document as DS-1. Besides ambulatory movements, some data from movements that, due to their

hard impacts, could more likely trigger false alarms (FAs) were also collected. One of the most

common movements performed during daily usage is to put the sensor on a table when the user

will not use it, or, for instance, to charge the sensor. During a preliminary study, it was verified that

this type of movement was one of the most likely to trigger false positives (FPs). Therefore a high

amount of movements of this type were acquired to train the algorithm. Another type of non-fall

movement acquired was, for instance, getting up, bend and pick up an object from the floor, based

on the protocol presented by Noury et al. (2007); Ozdemir (2016). The acquisitions were made

using the wearable sensor inside the user’s pants frontal pocket, on the waist (fixed on the belt)

or on the chest. Data were collected from 19 subjects, 5 women and 14 men, with an average

age of 25 ± 2 years old who gave their informed consent and participated voluntarily in the data

acquisition. The simulated falls were performed in ambulatory conditions and the users fell to a 10

cm high gym mattress while wearing a helmet for their safety. This dataset includes 1399 non-fall

movements (6.5 h of data) and 1009 simulated falls (4.5 h) in a total of 2408 movements (11 h of

data). Each sample acquired is considered as an activity, i.e., each sample acquired of walking a

few meters is considered as a single activity that can be well classified as non-fall, or misclassified

as fall.

To validate the algorithm in similar conditions to daily life, 22 young subjects, 5 women and

17 men, average age of 26 ± 3 years old, have performed a continuous data collection includ-

ing non-fall movements intercalated with falls, referred to as dataset DS-2. From these 22 young

subjects, only 9 subjects have participated in the data collection of the dataset DS-1. However,

from those 9 subjects, 7 have only performed non-fall movements. The remaining two have con-

tributed with data from simulated falls and non-fall movements. In this acquisition, each subject

performed 6 min of each of the following ambulatory activities: standing still, sitting, walking,

running, standing with freedom of movements and laying. Between these activities, each subject

has performed 4 different simulated falls. The complete protocol had a duration of approximately

40 min per subject. Regarding the type of simulated falls, the subjects were divided into two dif-

ferent groups. A group of eleven subjects (1 woman, 10 men) has performed a forward fall, a

backward fall, a sit-stand transfer fall, and a stand-sit transfer fall. The remaining eleven subjects

(4 women, 7 men) have performed movements of stumble and fall forward, lateral fall, vertical fall
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(faint simulation) and a forward fall preceded by getting up and walking for a few meters. These

movements were chosen based on the protocol presented by Noury et al. (2007); Ozdemir (2016).

During the acquisitions, each subject was wearing 3 wearable devices, in the three considered

on-body positions: chest, waist, and pocket (14 subjects used it in the right pocket and 8 used it

in both pockets). Eight of these subjects were wearing an additional sensor, making a total of 4

devices, placed in the chest, waist and both left and right pants frontal pockets. A total of 44.67 h

of accelerometer data containing 272 falls were acquired. The algorithm was tested individually

for each subject and the overall performance was analyzed.

10.1.2 Fall Detection Algorithm

The proposed algorithm is a modified version of the state machine algorithm developed in our

previous work, adapted to be implemented in a wearable device, as described in Figure 2 from

Aguiar et al. (2014a). Although the structure of the state machine is the same, since the device can

be placed more freely on the body, the conditions of transition between states are different, as well

as the thresholds of each state. The features used in the smartphone algorithm were dependent on

the orientation of the device. This new version of the algorithm should work independently for

three different on-body positions. In these positions, the device will have different orientations.

Therefore, as we do not want to require a calibration step, the calculation of features was changed

in order to make the features between each state independent of the wearable device orientation.

The objective is for the user to wear the wearable in the most convenient place without having ad-

ditional concerns. So, the thresholds between each state are defined by a feature that characterizes

each new state. These features were defined in our previous study of Aguiar et al. (2014a) using

machine learning techniques in order to obtain the best features that characterize each phase of the

fall. Then the best features obtained using these machine learning techniques were used in order

to build the state machine. To transit from state to state, a single or multiple features are calcu-

lated from the accelerometer data. This data is processed in real-time and sample by sample. If

the value of the calculated feature crosses the threshold previously defined, the transition between

consecutive states is performed. In this algorithm, in order to trigger a fall event, all the fall states

should be successively detected through the analysis of the data collected by the accelerometer

placed on the user’s body. The state machine has five different states: Stable, Unstable, Falling,

Impact and Unconscious Watcher, as presented in Fig.2 from Aguiar et al. (2014a). The transitions

between states are described as follow:

1. Stable to Unstable State: When the fall detector algorithm is enabled and the subject is

not moving, the system will start in the Stable state. Then, if some relevant acceleration

changes are detected, the algorithm transits to the Unstable state. This change in acceleration

is evaluated calculating the magnitude of the acceleration.

2. Unstable to Falling State: When in the unstable state, a significant decrease in acceleration

can indicate that the user is experiencing a free fall, Falling State. To check if the decrease

in acceleration values occur according to what is expected during a fall, the ratio between



90 Wearable Embedded Intelligence for Detection of Falls Independently of on-Body Location

the magnitude of the linear acceleration and the magnitude of acceleration at each moment is

evaluated.

3. Falling to Impact State: If a fall is truly occurring, when the subject hits the ground, a

sudden and significant increase in the acceleration and a large difference in body orientation

occurs, corresponding to the change from standing/sitting positions to the lying position oc-

curring after the fall. Thus, when the state machine is in the falling state, two different features

are evaluated: the magnitude of acceleration and the angle between two different vectors: the

average acceleration vector in this state and the average acceleration vector obtained before

entering in the Falling state.

4. Impact to Broadcast of the fall: After the impact, the system starts an Unconscious watcher

that will check if the user has recovered from the fall or not. If the user does not move

during five seconds after the fall, a fall alert will be broadcasted. If some movement is de-

tected, the system will restart the process in the Unstable state. This detection of movement

is accomplished by evaluating the values of the acceleration magnitude during the Uncon-

scious watcher.

10.1.3 Accelerometer Sampling Rate Analysis

There is no consensus in the literature regarding the ideal accelerometer sampling frequency for

fall detection. In the review of Schwickert et al. (2013), 61 studies focused on the development

of algorithms using accelerometer data for fall detection were analyzed and the range of sampling

rates used varies from 6 to 3200 Hz. Furthermore, Kangas et al. (2012) has used dynamic sampling

frequencies depending on the fall phases. Therefore, it is important to study the sampling rate that

would allow our algorithm to achieve the best performance. Still, the accelerometer used in our

wearable device only allows sampling rates of 8, 50, 100, 250, 333 and 500 Hz. As the samples

of the datasets DS-1 and DS-2 were collected at 100 Hz, the performance of the algorithm can

only be tested with the data undersampled to 8, 50 or 100 Hz. In Kangas et al. (2012) the authors

discussed that during the pre-impact phase of a fall, the data sampled at 6.25 Hz were not enough

to identify the movements in detail. Consequently, 8 Hz should also not be enough to discriminate

the fall features and, for this reason, the algorithm optimization and validation processes were

repeated using the data at 100 Hz and undersampled to 50 Hz.

10.1.4 State Machine Thresholds Optimization

Since the main objective of this work is the creation of a robust fall detection algorithm indepen-

dent of the on-body sensor location, samples from the three on-body positions in dataset DS-1

were mixed to train the algorithm.

The optimization process iterates over a set of thresholds of the state machine. For each thresh-

old, a higher and lower bound of its possible value is defined. Then in each iteration, a random
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combination between each threshold values will be tested and the results will be summarized for

all combinations. This optimization process was implemented following these steps:

1. Perform a random stratified sampling of the dataset DS-1 10 times with a train/test ratio of

0.7, meaning, 70% for the train set and 30% for the test set.

2. For each split, randomly undersample the majority class on the train set, in this case the

non-fall movements, 10 times.

3. For each undersampled set, randomly generate 100 thresholds sets according to the allowed

lower and higher bounds set for each parameter.

4. Train each set of thresholds with the corresponding train dataset. Save the 50 best sets and

their respective test set.

5. Test the 50 selected sets of thresholds with the corresponding test set.

6. From the results obtained for all iterations of dataset splitting and undersampling, the 50 sets

of thresholds that presented the best result during the evaluation with the test set of the dataset

were chosen.

The train/test ratio chosen was equal to 0.7 in order to take advantage of as much data as

possible. Also, as it was also collected a validation set DS-2, the test part is only used for a

preliminary choice and for this reason the majority of data can be used for training the algorithm.

10.1.4.1 Sensitivity Level Sets Selection

After the iterative process explained in the last section, since it is not possible to obtain a perfect

score in the detection of falls and non-falls, it was decided to choose three different sets of thresh-

olds according to their levels of sensitivity: high, medium and low sensitivity sets of thresholds.

With this objective, from the 50 results obtained in step 6, the 10 sets of thresholds with the highest

J-Index score were chosen in order to generate a Receiver Operating Characteristic (ROC) curve.

To obtain the ROC, the value of sensitivity, true positive rate, obtained was plotted against the false

positive rate (1-specificity). Then, the sets corresponding to the optimal point of the ROC curve,

the point with the highest specificity and the point with highest sensitivity were selected as the

medium, low and high sensitivity sets of thresholds, respectively. This process was repeated using

the results of the iterative process performed with the data at both 100 and 50 Hz of sampling rate.

10.1.5 Algorithm Validation

In order to validate the set of thresholds chosen after optimization at 100 and 50 Hz, these were

tested using the dataset DS-2, described in Section 10.1.1. To analyze the results obtained on

this test, these were firstly plotted in order to create a Total Operating Characteristic (TOC) curve

(Pontius and Si, 2014). In order to generate this curve, the hits, true positives (y-axis), are plotted
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against the hits plus the false positives, this is, against the total of positive predictions (x-axis)

(Pontius and Si, 2014). Therefore, this curve allows better visualization of the balance between

FAs and the number of correctly detected falls for the six sets of thresholds (high, medium and low

sensitivity levels for each frequency) chosen in the previous process of Section 10.1.4.1. Since the

fall detection algorithm evaluates each of the data samples (44.67 h of data at 100 Hz corresponds

to more than 16 million samples), the number of non-fall cases that can possibly generate FAs is

very large and difficult to represent. Thus, the maximum value of the x-axis of the TOC chart,

which represents the worst case in which all the non-fall samples are wrongly classified as falls,

is not represented. On the other hand, the maximum of the y-axis, where the well-classified falls

are represented, is the number of falls that the dataset DS-2 contains. To analyze the TOC chart, it

should be taken into account that when there were more points below the maximum of the y-axis,

the number of falls that were not detected increased. Also, if the algorithm has no FAs the number

of well-detected falls is the same as the number of well-detected falls plus the false alarms, the

value in x is equal to the value in y. Therefore, the more points there are to the right of the diagonal

line, which represents the existence of no FAs, the higher the number of the FAs.

The performance of the fall detection algorithm when tested with the dataset DS-2 is also ana-

lyzed by calculating the sensitivity, precision, and F-score. In order to better depict the prevalence

of FAs and their possible impact on the daily life, besides the number of FAs and the precision, we

also take into account the number of FAs per day, considering 16.5 h of daily usage (Bourke et al.,

2010).

10.2 Results

10.2.1 Threshold Optimization - 100 Hz

The ROC curve obtained after the threshold optimization process using the data at 100 Hz is

presented in Figure 10.1. From this ROC curve the sets corresponding to the three levels of

sensitivity, black points, were selected. The medium sensitivity point (black dot in Figure 10.1)

presents 95.0% of sensitivity and 94.4% of specificity. The low sensitivity set which is also the one

with higher specificity, black square, has 97.3% specificity and 89.4% of sensitivity, and the high

sensitivity set (black triangle in Figure 10.1) has 96.4% of sensitivity and 92.8% of specificity.

10.2.2 Thresholds Optimization - 50 Hz

The ROC curve with the 10 best results obtained in the test using the data undersampled at 50

Hz is presented in Figure 10.2. The black square in Figure 10.2 represents the results of the low

sensitivity level, 97.4% of specificity and 93% of sensitivity. The medium sensitivity level is rep-

resented with the black dot, 96.4% of specificity and 96.7% of sensitivity. Lastly, the black triangle

in Figure 10.2, represents the high sensitivity level, 98.3%, that had also 94.5% of specificity.
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Figure 10.1: Receiver Operating Characteristic (ROC) curve with the 10 sets of thresholds that
presented a better J-index when the algorithm was tested with the test set sampled at 100 Hz—
Black square: Low sensitivity level; Black doth: Medium sensitivity level; Black triangle: High
sensitivity level.

Figure 10.2: ROC curve with the 10 sets of thresholds that presented the best J-index when the
algorithm was tested with the test set sampled at 50 Hz—Black square: Low sensitivity level;
Black doth: Medium sensitivity level; Black triangle: High sensitivity level sensitivity.

10.2.3 Comparison between 50 Hz vs. 100 Hz Sets

Table 10.1 summarizes the results for the three levels of sensitivity chosen in both 100 and 50

Hz optimization, already mentioned in Sections 10.2.1 and 10.2.2. The results regard the test with

30% of the DS-1. As our iterative process randomly splits the DS-1 in each iteration, the test results

are obtained for different test sets. Therefore each set of thresholds was tested with a different test

set. Even so, as can be observed in Table 10.1, the levels of sensitivity optimized for 50 Hz perform

better than 100 Hz levels. The specificity increase was already expected when decreasing the



94 Wearable Embedded Intelligence for Detection of Falls Independently of on-Body Location

Table 10.1: Comparison of 100 Hz and 50 Hz sets of thresholds when tested with each respective
test set, 30% of the dataset DS-1.

Sensitivity High Medium Low

Frequency (Hz) 100 50 100 50 100 50
Sensitivity (%) 96.4 98.3 95.0 96.7 89.4 93.0
Specificity (%) 92.8 94.5 94.4 96.4 97.3 97.4

J index (%) 89.2 92.8 89.4 93.1 86.7 90.4

sampling frequency since with a lower number of samples the possibility for outliers is reduced.

This comparison between 50 and 100 Hz levels indicates that the algorithm performs better with

data sampled at 50 Hz. However, since the test sets used are different, further validation with the

dataset DS-2 was conducted as described in Section 10.1.5.

10.2.4 Algorithm Validation in Continuous Usage

Figure 10.3: Total Operating Characteristic (TOC) curve with the results of the algorithm on DS-
2 using each set of thresholds chosen for each frequency. Legend: Squares—Low sensitivity
levels; Triangles—Medium sensitivity levels; Circles—High sensitivity levels; Black marks—
50Hz; Grey marks—100 Hz.

The TOC curve obtained with the results from the validation test of the algorithm using each set

of thresholds is presented in Figure 10.3, as explained in Section 10.1.5 of the methods. Analyzing

this Figure 10.3 it can be observed, as expected, that results from the high sensitivity sets of

thresholds, circles, are the ones closer to the “Total Dataset Falls” line which means that the

number of falls correctly detected is, as expected, the highest for these sets. Simultaneously, these
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points are the ones that are further away to the right from the diagonal “No False alarms” line,

which means that these sets are also the ones with a higher number of FAs. The 50 Hz sets are,

with exception of the medium sensitivity level, black triangle, closer to this line comparing with

the 100 Hz sets. On the other hand, the 100 Hz sets points, are always above the corresponding

50 Hz sets points, meaning that the number of well-detected falls is higher. The exception to this

behavior is the medium sensitivity sets since the 50 Hz set is able to detect a higher number of

falls, as observed by the black triangle being above the grey triangle in Figure 10.3, while having

the same number of FAs. In Section 10.2.3, the 50 Hz threshold sets showed the best performance

regarding both sensitivity (fall detection rate) and specificity when tested in the test set of DS-1. It

does not occur during this validation since the sensitivity is lower for the high and low sensitivity

levels at 50 Hz when compared with the corresponding 100 Hz sets.

Table 10.2: Results of the test using the DS-2 with both 50 and 100 Hz sets of thresholds.

Sensitivity Levels High Medium Low

Amount of data 44.67 h

Number of falls 272

Srate (Hz) 100 50 100 50 100 50

True Positives 259 243 228 236 231 220
False Alarms 24 16 6 5 6 1
Sensitivity % 95.2 89.3 83.8 85.6 84.9 80.9
Precision % 91.5 93.8 97.5 97.5 97.5 99.5
F-score % 93.3 91.5 90.1 91.8 90.8 89.3
FA per day 8.9 5.9 2.1 1.9 2.1 0.4

The remaining metrics obtained during this process of validation of the algorithm were sum-

marized in Table 10.2. It shows that for all sets of thresholds, independently of the sampling

rate, the sensitivity is always higher than 80%. As expected the set that has the lowest sensitivity,

80.9%, also has the lowest number of FAs. One FA was triggered using almost 45 h of data for

the low sensitivity level thresholds set optimized at 50 Hz. Regarding the low sensitivity set at

100 Hz, the fall detection rate is higher, 84.9%. However, the number of FAs also increases from

1 to 6. These results are even more relevant when analyzing the average FAs per day, since the

100 Hz set would broadcast, in average, more than 2 FA per day while the 50 Hz set would only

broadcast, in average, less than 0.5 FA per day.

On the other hand, the high sensitivity thresholds set optimized at 100 Hz is the one that

presents the best fall detection rate, 95.2%. However, this set has also triggered a large number of

FAs (24) with an average of almost 9 FAs per day. Comparing the high sensitivity set optimized for

100 Hz, which presents 95.2% of sensitivity, with the one optimized for 50 Hz data, the sensitivity

decreases to 89.3%. These values reveal that the amount of non detected falls increases from 13 to

29 between the 100 Hz and the 50 Hz sets. However, the precision increases from 91.5 to 93.8%,

from the 100 to the 50 Hz set, revealing that using the data at 50 Hz can reduce the number of FAs
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in 3 FAs per day.

Regarding the medium sensitivity level, both 50 Hz and 100 Hz sets have performed similarly

regarding the number of FAs, 6 at 100 and 5 at 50 Hz. However, the 50 Hz set has a higher value

of fall detection rate, 86.8% vs. 83.8%. The number of FAs with these sets are lower than with

the sets with high sensitivity level, however, they are still quite high with an average of 2.1 and 1.9

FAs per day, for the 100 Hz and 50 Hz sets, respectively.

Summing up, the use of a sampling rate of 50 Hz will benefit the algorithm’s performance by

reducing the number of FAs, which is particularly relevant for the low sensitivity level mode.

10.3 Discussion

In this study, we propose a fall detection algorithm that works independently for three different

body locations, waist, chest, and pocket. This algorithm is a low complexity accelerometer state

machine that was implemented in a wearable device. The device is responsible for executing all

the data processing and communicates the occurrence of a fall to, for example, a smartphone that

would be responsible to transmit this information to a caregiver. In case the wearable contains

a GSM feature, the fall alert could be directly broadcasted to the caregiver. Additionally, three

different sensitivity/specificity optimization modes were developed, and a study about which ac-

celerometer sampling rate would allow a better algorithm performance was carried out.

Different people have a different fall risk, depending on several intrinsic factors, such as, the

physical activity level and specific health conditions. Factors like movements with huge impacts

have similar patterns to falls which can influence the performance and reliability of the algorithm

due to the probability of triggering false alarms. Therefore, it is particularly interesting to have an

algorithm that allows an adjustment to the trade-off between specificity and sensitivity. This means

that, if a person has a high risk of falling, a high sensitivity level of the algorithm should be used,

while for a healthy person a low/medium sensitivity level should suffice. Thus, some sensitivity

levels tested in this work should be considered for daily use. For instance, for a low risk patient,

the best sensitivity level set at 50 Hz can be used, having 80.9% of fall detection rate and, on

average, less than one FA per day, supporting three on-body positions. If the patient suffers from

a condition that increases his fall risk, a high sensitivity level set should be selected, for instance,

the 50 Hz set that, in our validation, had almost 90% of fall detection and 6 FA per day. The

FA values will also depend on how active the user is since active people will be more likely to

have sudden movements that can be confused with falls and cause FAs. Since the data used in

validation was acquired from young subjects, that are usually more active than elderly users, the

results regarding the number of FAs can be biased representing a worst case scenario. For the

subjects with a high risk of falling, it is more important to have a better fall detection rate, due to

the highest probability of occurring a fall. At the same time, these subjects are usually people with

low mobility, which consequently have fewer movements that can generate FAs. Therefore one of

the high sensitivity sets can be suitable for this group of high fall risk since this sensitivity level

has a high fall detection rate and the number of FAs would probably be reduced given the users’
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lower mobility. The sets of thresholds deployed should also depend on the physical activity of the

user. A high physically active person will have more movements that can have similar patterns

to the falls and therefore sets with higher specificity should be deployed. Further validation with

elders with different levels of physical activity and people with a high risk of falling is, for this

reason, still required.

When varying the sampling rate of the accelerometer, the performance of the algorithm im-

proves when the sampling rate decreases from 100 to 50 Hz, mainly regarding the FA rate. Gao

et al. (2014) have studied the performance of some single accelerometer activity classifiers for

sampling rates between 10 and 200 Hz. They verified that the accuracy of the algorithm increases

from 10 to 50 Hz and stabilizes above this frequency. These results are in accordance with those

obtained in this study. Between the supported frequencies, 50 Hz was the frequency that showed

the best results in our study considering the analysis of the trade-off between fall detection rate

and FAs for the three sensitivity levels. The 100 Hz sets have shown, however, better performance

regarding the fall detection rate, mainly for the high sensitivity set. Hence, the use of different

sampling rates depending on the intended sensitivity level can be considered. For instance, when

a high sensitivity level is chosen, the algorithm would use the data at 100 Hz and the respective

high sensitivity sets of thresholds. For the low and medium levels the data would be undersampled

to 50 Hz and the respective sets of thresholds, optimized to this sampling rate, would be used.

A low-power fall detector using accelerometer and barometer data was proposed by Wang

et al. (2016). It was considered the usage of the sensor on the user’s chest. Their objective, like

ours, is to develop an algorithm that runs on a wearable device and allows its battery to last as

long as possible. They obtained a sensitivity of 93% and a FA rate of 0.023 alarms per hour,

0.3795 per day considering 16.5 h of daily usage. In our work, for instance, using the medium

sensitivity level at 50 Hz wearing the sensor on the user’s chest, no FA were obtained. Additionally,

the value of the fall detection rate is 8.8% lower than the obtained in Wang et al. (2016). In

general, the algorithm using the remaining set of thresholds outperforms their in terms of FA, but

is outperformed regarding the obtained sensitivity. The worst performance of our algorithm using

most of the sensitivity levels compared with their work could be explained, mainly, by the use of

the barometer sensor in their work.

Pannurat et al. (2017) developed a hybrid framework that combines activity classification using

machine learning and rule-based knowledge representation for the detection of different phases of

falls. Similarly to our algorithm, it also works for several positions, namely, head, arm, wrist, an-

kle, chest, side waist, front waist, and thigh. For all the positions, the specificity of their algorithm

is lower than the one obtained with our algorithm using any sensitivity level set. When testing

their best algorithm with a dataset containing activities of daily living they found false alarm rates

below 0.05% for both waist and chest positions. The dataset they used has smaller periods of data

of each activity (15 s) when compared to our continuous dataset of Section 10.1.1. As they use

0.5 s windows, for the chest position they have 61,200 data samples. Therefore, the value of false

alarm rate reported, 0.05%, representing a total of 6 FAs in less than half an hour of data. With

some specific levels of thresholds for both considered positions, chest and waist, our algorithm
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did not trigger any false positive in almost 45 h of data. The fall detection rate is similar to both

algorithms. Although our algorithm presents better results, a further comparison using the same

dataset for validation is still required. Even though, the algorithm presented has some advantages

when compared with the one presented by Pannurat et al. (2017), such as the independence of the

on-body sensor position for the three positions considered (waist, chest, and pocket), as well as

the fact that it does not require a calibration step before changing the wearable position.

A study of Bagalá et al. (2012) demonstrated that most common algorithms decrease their

accuracy when tested with real falls instead of simulated ones. For this reason, the algorithm

presented in this work still requires validation with real falls. Even though, this data is really

difficult to obtain since falls are rare and unpredictable events (Khan and Hoey, 2017).

10.4 Conclusions

In this work, we present a fall detection algorithm implemented in a wearable device that can

be used in three different body positions, chest, waist, and pocket. It uses single accelerometer

data and classifies the movements using a state machine. Even while having to respect hardware

constraints that require a very simple algorithm and impose implementation approximations, and is

optimized and tested for three different on-body positions, it presents a performance level similar

to more complex or single position algorithms currently presented in the literature. Additionally,

it shows some versatility since it can be adjusted to three different levels of sensitivity that can be

used to better suit the subjects’ needs depending on different risks of falling and mobility patterns.

In this study it has also been showed that decreasing the accelerometer sampling rate does not

largely affect the accuracy of the detection, being even beneficial for avoiding false alarms. The

decrease in the accelerometer sampling rate has a positive side effect in decreasing the demand for

the processing capabilities, resulting in a more suitable use of the algorithm in wearable devices.

To summarize, the fall detection algorithm described in this work presents a reliable, simple,

and wearable solution for automatic fall detection. This is a versatile solution that can be adapted

to different groups of people with different fall risk levels. Also, it can be used in different on-body

positions, without requiring any calibration step, which makes this system less intrusive and easier

to use.
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The past years have witnessed a boost in fall detection-related research works, disclosing an

extensive number of methodologies built upon similar principles but addressing particular use-

cases. These use-cases frequently motivate algorithm fine-tuning, making the modeling stage a

time and effort consuming process. This work contributes towards understanding the impact of

several of the most frequent requirements for wearable-based fall detection solutions in their per-

formance (usage positions, learning model, rate). We introduce a new machine learning pipeline,

trained with a proprietary dataset, with a customizable modeling stage which enabled the assess-

ment of performance over each combination of custom parameters. Finally, we benchmark a

model deployed by our framework using the UMAFall dataset, achieving state-of-the-art results

with an F1-score of 84.6% for the classification of the entire dataset, which included an unseen

usage position (ankle), considering a sampling rate of 10 Hz and a Random Forest classifier.
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In this study, we introduce a new machine learning pipeline, trained with data from a compre-

hensive proprietary dataset, to model and deploy custom-made fall detection algorithms, based on

which we shall:

1. Study the cases in which customization is indeed necessary

• Model complexity: Do models of higher complexity outperform models of more mod-

est complexity at detecting falls?

• Sensor position generalization: Do models that were not trained with data from sen-

sors placed on a certain body position maintain their performance when evaluated with

these data?

• Single vs. multiple training positions: Do models solely trained with data from sen-

sors placed on a certain body position A perform better than models trained with data

acquired at multiple positions when evaluated with data from A?

• Sampling rate: Does the accelerometer sampling rate have an impact in fall detection

performance?

2. Evaluate the performance of our framework against the state-of-the-art

• External data generalization: Do models deployed by our framework perform ade-

quately at detecting falls using datasets acquired under different conditions?

• Positioning within state-of-the-art: Is the performance of a model deployed by our

framework competitive within the state-of-the-art?

All in all, this study makes significant contributions towards i) understanding if customiza-

tion is indeed necessary for a specific use case, namely regarding usage position, accelerometer

sampling rate, and processing/performance trade-off requirements; ii) the automated creation of

mature ready-to-go fall detection solutions adapted to several of the most frequent customization

requirements for wearable-based systems.

11.1 Methods

Figure 11.1 depicts an overview of the proposed approach for the automated development of cus-

tom fall detectors, enabling a clearer understanding of the relation between each stage within the

flow of the method. The following subsections detail the steps at each of these stages.

11.1.1 Data acquisition

11.1.1.1 Protocol

Fraunhofer AICOS has been acquiring simulated falls and non-falls since 2009. The protocol for

data collection was first described by Aguiar et al. (2014a); Alves et al. (2019), which followed
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Figure 11.1: Study design overview.

the protocol defined by Noury et al. (2007), and considers data collection for the on-body sensor

positions of chest, belt, and pocket. Recently, that protocol was extended to include the wrist

position and non-fall movements specific to the wrist. The dataset was collected in laboratory

conditions, at AICOS’ living lab, where two mattresses were placed in the ground. The living

lab also included a sofa, a table with chairs, a bed and an open space for acquiring running and

walking samples. The activities of daily living recorded as non-falls included drop the sensor on

the table, sit on a lower chair, catch an object from the floor while walking, run a few meters, laying

on a bed, among others. The type of falls recorded included forward, backward and lateral falls

(without recovery) ending lying on the floor. The protocol was previously described by Aguiar

et al. (2014a) and Alves et al. (2019). Overall, the dataset comprises 36 different types of falls and

43 types of non-falls. Data was collected using a data logger Android application that provides

access to the inertial sensors either directly built-in the smartphone or in wearable devices paired

with the smartphone. The wearable devices used are proprietary of Fraunhofer AICOS and include

a 3-axis Inertial Measurement Unit (IMU) (AICOS, 2016). Several smartphone models were used

for data collection, namely: Samsung S3, S3 Mini, S4, Nexus S, Galaxy Nexus, Nexus 5, Moto G

XT1032, and Vodafone 985N.

11.1.1.2 Data distribution

Data was collected in several occasions, from different participating subjects who wore a set of

devices in different on-body locations. For this reason, none of the subjects has collected data for

the complete set of usage positions considered in this study. For each subject, the positions for

which only one class is available (fall or non-fall) were removed prior to the analysis. The cleaned

dataset is composed of 42 subjects (34 males) with average age of 25.0 ± 2.9 years, an average

weight of 72.4 ± 12.6 kg, and an average height of 176.0 ± 7.9 cm. The percentage of samples that

were captured by the built-in sensors of the smartphones was 54.17% and the percentage acquired

with the wearable devices was 45.81%. The average sampling rate for the smartphone samples

was 102.26 ± 24.11 Hz and for the wearable samples the average sampling rate was 97.68 ± 8.50
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Hz. The accelerometer range was ± 2G for all used smartphone models and wearable devices.

The distribution of samples across the two classes is presented in Table 11.1. The belt and pocket

sensor positions have a higher percentage of samples than chest and wrist positions, because belt

and pocket positions include samples from the smartphone and from wearable devices, whereas

the chest and wrist include only samples from wearable devices. Overall, the distribution of falls

and non-falls per position for the entire dataset may be considered nearly balanced. On average

the fall events have a duration of 15.20 ± 4.99 seconds and the ADLs activities have a duration of

14.94 ± 5.30 seconds.

Table 11.1: Distribution of dataset across different positions in terms of number of subjects, fall
and non-fall samples.

Position Subjects Fall Non-fall Total
Belt 24 1731 1407 3138

Pocket 28 1305 1146 2451
Wrist 7 887 1112 1999
Chest 12 455 401 856
Total 42 (unique) 4378 4066 8444

11.1.2 Modeling

Figure 11.2 illustrates the pipeline for automated modeling, using the AICOS dataset. This

pipeline is prepared to receive several input parameters that enable the customized modeling (see

Figure 11.1): 1) train and test positions; 2) learning models; 3) target sampling rate; 4) grid-search

optimization score. In the scope of this work, all experiments were performed using the F1-score

as the optimization score.

11.1.2.1 Data preprocessing

A resampling strategy was firstly implemented with the aim of correcting the time distribution of

all arriving samples and compensating for eventual sensor reading gaps. The accelerometer signal

magnitude was evenly sampled, according to the target sampling rate. To that end, we computed

the expected time of arrival of each sample (te). Samples arriving before te were stacked and their

average was computed and set to correspond to te; if there were no samples arriving before te,

the value of the last sample which arrived in the stream was considered. This combination of up

and down-sampling techniques resulted in the computation of the accelerometer signal magnitude,

evenly distributed in time, according to the required sampling rate. The data stream was segmented

into windows of 7.5 seconds, without overlap, centered in the signal magnitude maximum. If there

were not enough samples in the beginning or in the end of the window, after centering it in the

maximum, the first and/or the last samples, respectively, were replicated until the pre-defined

window size is reached. Windows with a standard deviation of low accelerometer magnitude were

removed in order to discard samples that were useless for training the fall detection algorithm.
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Figure 11.2: modeling stage: data preprocessing, feature extraction and selection, and nested
leave-one-subject-out validation with grid search.

11.1.2.2 Features

Several time-domain features were extracted for each time-window signal magnitude: mean, stan-

dard deviation, median, median deviation, maximum, minimum, energy, root mean square, in-

terquartile range, histogram (10 bins), skewness and kurtosis, using our open-source Time Series

Feature Extraction Library (AICOS, 2019). These features require low computation power and are

the most commonly used features for fall detection according to Pannurat et al. (2014). Features

with a correlation higher than 0.90 were removed. All features of the training set were standardized

by removing the mean and scaling to unit variance. The same parameters were used to standardize

the test set. These features constituted the input for all classifiers, with the exception of CNN.

CNN received a feature vector of raw signal magnitude (for each time-window), re-scaled to [0,1]

range by subtracting the minimum and dividing by the difference between the maximum and the

minimum signal magnitude.

11.1.2.3 Leave-one-subject-out validation

Two nested LOSO loops were used for training and validation assessment. The inner LOSO was

used to optimize the hyperparameters of the learning models via grid search (except for the CNN-

1D model) using N-2 participants for training and 1 subject for validation.

• Grid search for hyperparameters optimization: The hyperparameters of the learning mod-

els were optimized for F1-score metric. The following hyperparameters were optimized for

each classifier, k-Nearest Neighbours (k-NN): parameter k and search algorithm; Decision



104
Automated development of customised fall detectors: position, model and rate impact in

performance

Tree (DT) & Random Forest (RF): maximum depth, number of features and estimators, and

minimum samples to split; AdaBoost: number of estimators; Multi-layer Perceptron (MLP):

variable alpha, activation function and learning rate; Support Vector Machine (SVM): vari-

able C, degree, gamma and type of kernel.

• CNN-1D architecture: The architecture of the network encompasses two stacked 1-Dimensional

Convolutional Neural Network (CNN-1D) with a kernel size of 5, with 4 filters, and a

tangent activation function. CNN-1D layers were interleaved with max-pooling and 0.25

dropout layers. The sigmoid function was used in the last activation layer. The loss function

was set to the binary cross-entropy and optimized with the Adam algorithm.

The outer LOSO was used to assess the performance of the best set of parameters, retrieved

from the grid search (inner LOSO), in the remaining subject of the dataset. The final output

metrics, presented in section 11.2, were computed by mapping correct and misclassifications by

user, position and learning model. This process enabled the computation of single (cumulative)

confusion matrices with respect to each of these parameters, from which all performance met-

rics were extracted: accuracy (Acc), sensitivity (Se), specificity (Sp), precision (Prec), F1-score

(F1), Youden index (YI), and geometric mean of sensitivity and specificity (G). As such, this

outer LOSO was paramount to enable the fair comparison of algorithms defined by different input

parameters, maintaining complete user-independence in the validation process.

11.1.3 Multiple comparisons

Table 11.2: Different combinations of input parameters tested using the modeling pipeline.

Type of
test

Positions Target Learning
Train Test rate (Hz) model

Baseline P, B, C, W P, B, C, W 100 All

Unseen
test po-
sition

C, B, W P 100
P, B, W C 100 Random
P, C, W B 100 Forest
P, C, B W 100

Single
posi-
tion

P P 100
C C 100 Random
B B 100 Forest
W W 100

Rate
varia-
tion

P, B, C, W P, B, C, W 50
P, B, C, W P, B, C, W 20
P, B, C, W P, B, C, W 10 Random
P, B, C, W P, B, C, W 5 Forest
P, B, C, W P, B, C, W 3
P, B, C, W P, B, C, W 1

Legend: P–Pocket; B–Belt; C–Chest; W–Wrist
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ANOVA multiple comparison analysis was used for comparison of performance metrics be-

tween different tests, using vectors of metrics by user obtained from the outer LOSO validation

loop as input. As post-hoc test, we used the Tukey’s Honest Significant Difference test (95% con-

fidence level) between pairs of different learning models, usage positions or sampling rates. These

tests aimed the identification of statistically significant differences between different combinations

of input parameters (Table 11.2), in order to address the research questions of this work.

All learning models were considered and compared pair-wise for training and testing with all

positions at 100 Hz (Baseline). For simplicity of analysis, we selected a single model - Random

Forest - for conducting all remaining tests, based on the results of the aforementioned comparison

and the fact that it is a decision-based classifier. Algorithms based on decision trees are very

interpretable, do not require much computation, and are ease to implement in any platform. A

more detailed explanation of this selection process is provided in subsection 11.2.1.

11.1.4 Deployment

The output metrics of the LOSO validation in the modeling stage shall assist the process of se-

lecting the most adequate learning model for deployment, considering the requirements of each

specific use case, i.e. the selection process should consider performance, complexity and/or other

requirements initially set up for the algorithm.

After the selection of the classification algorithm, all data of the AICOS dataset corresponding

to the required positions (and resampled to the desired target rate) are used to refit the classifier,

with the respective best set of hyperparameters derived from the process of LOSO grid search.

This step completes the deployment of a final fall detection algorithm.

To evaluate the effectiveness of our method, we have deployed a fall detector algorithm using

a Random Forest classifier, expecting a sampling rate of 10 Hz, and trained with all positions

available in the AICOS dataset. This algorithm was then tested using all data from the UMAFall

dataset for performance comparison with other fall detection works using the same data.

11.1.5 Benchmark validation using the UMAFall dataset

We benchmarked our framework with the publicly available UMAFall dataset (Casilari et al.,

2018) described in Casilari et al. (2017b); Santoyo-Ramón et al. (2018). Several ADLs and simu-

lated falls were collected from 17 volunteers with an average age of 26.7 ± 10.5 years old. Each

subject wore four different wearable devices – chest, belt, wrist, ankle – and carried one smart-

phone in the pocket. Overall, 11 types of ADLs and 3 types of falls were simulated, yielding

a total of 970 falls and 2444 non-falls, with an average of 683 samples for each usage position.

Accelerometer, gyroscope and magnetometer data was collected at a sampling rate of 20 Hz from

the wearables and 200 Hz from the smartphone.

The UMAFall dataset was selected for its representation of all sensor positions included in

AICOS dataset. Interestingly, it also contains data from wearables positioned in a new position –
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the ankle –, which our framework is not expecting, and shall thus allow us to assess the general-

ization of the deployed fall detector for this new usage position.

11.2 Results

11.2.1 Multiple comparisons

Even though we analysed multiple comparisons for several performance metrics, we opted for

solely presenting the results for the F1-score for simplicity of analysis, since it was selected as

the scoring metric in the optimization process. Moreover, the F1-score will allow us to assess the

performance of the algorithm taking into account an harmonic mean of precision and recall.

Figure 11.3: F1-score for all tested classifiers, considering the baseline input parameters. Classi-
fiers with SSD from CNN for each sensor position are marked with stars.

The first set of comparisons corresponded to the performance of different learning models for

the same set of input parameters (defined as Baseline in Table 11.2). Results were arranged by

position and classifier and exhibited in Figure 11.3. We looked for statistically significant dif-

ferences (SSD) between all pairwise combinations of classifiers. No SSD was found among the

conventional supervised binary models tested within each position; however, CNN’s performance

was frequently significantly inferior to that of the remaining models. Given the equivalence of all

the conventional models tested, all subsequent experiments were performed using a single classi-

fication model. We prioritized decision-based models (Decision Tree and Random Forest) in this

selection, due to their low prediction expensiveness which is valuable for wearable implementa-

tions. Decision trees are easy to deploy in firmware and are also fast at giving predictions. Random
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Forest was finally selected since it consistently led to higher average F1-scores than Decision Tree

classifiers.

Figure 11.4: F1-score for Random Forest classification, considering the described combinations
of input parameters. Pipelines with SSD from Baseline for each sensor position are marked with
stars.

Figure 11.4 presents the results for different combinations of train/test sensor positions, organ-

ised by sensor position of test data. Multiple comparison analysis was performed between results

for respective positions derived from setting as input parameters: 1) Baseline vs. Unseen test po-

sition; 2) Baseline vs. Single position. No SSD were found between either of them. This means

that, for example, for 1), the performance of detecting falls in data from sensors in the pocket

remains unchanged irrespective of whether data from sensors in this position are included in the

training set or not; and, for 2), solely using data from sensors in the pocket for training does not

improve the performance falls detection in data from sensors in the pocket, relatively to including

data from all the different sensor positions in the training set.

Finally, fall detection performance results using data sampled at different rates are depicted

in Figure 11.4. A Random Forest classifier was trained and tested using data from sensors in all

the positions available in AICOS dataset and varying the accelerometer sampling rate (Baseline

and Rate variation entries of Table 11.2). Considering rates of 100 Hz, 50 Hz, 20 Hz or 10 Hz

did not lead to SSD between the fall detection performance for respective test positions. However,

statistically significant decays of performance were verified for belt and pocket positions for rates

of 5 Hz and 3 Hz, and, more evidently, for all positions with data sampled at 1 Hz.
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11.2.2 Benchmark validation

Table 11.3: Evaluation results with the UMAFall dataset. All performance metrics are in %.

Position F1 Acc. Recall Specificity Precision Youden I. G. Mean N
B 95.0 96.9 95.2 97.7 94.7 92.9 96.4 617
P 90.2 94.2 92.8 94.7 87.7 87.5 93.7 723
C 90.8 94.9 87.5 97.9 94.3 85.4 92.5 725
W 81.5 87.3 97.1 83.4 70.1 80.5 90.0 726
A 65.3 78.9 78.3 79.1 55.9 57.5 78.7 623

PBCW 88.8 93.2 93.1 93.2 84.9 86.3 93.2 2786
PBCWA 84.6 90.6 90.7 90.5 79.2 81.2 90.6 3414
Legend: P–Pocket; B–Belt; C–Chest; W–Wrist; A–Ankle; N–No. Samples

Table 11.3 combines the results obtained using the framework’s model specifically deployed

for benchmark validation, as previously described, organised by testing data sensor positions, for

all sensor positions included in AICOS dataset (i.e. except ankle), and for the entire dataset. All

computed metrics were presented for analysis to instigate further comparisons with previous and

future works in the field.

The belt sensor position presented, overall, the best results, immediately followed by pocket

and chest positions - the first associated with more false positive occurrences (lower specificity)

and the latter associated with more false negative occurrences (lower sensitivity). For data from

sensors placed on the wrist a decrease of performance was verified, as compared with the previous

positions, which is coherent with the results obtained using the AICOS dataset (Figure 11.3).

Finally, considering the testing data from sensors on the ankle yielded the poorest performance for

all compared metrics. Combining the samples of all positions, we achieved an F1-score of 84.6%,

which increased until 88.8% by not considering the unexpected ankle position.

11.3 Discussion

This section will provide an overall discussion of results, considering general results, CNNs com-

pared with standard techniques, and impact of positions and sampling rate in the performance of

the models. Moreover, a state-of-the-art performance comparison will be presented along with

potential limitations of this study.

11.3.1 Need for customization

Figures 11.3 and 11.4 provide important information towards understanding the cases worthy of

investment in customization.

Starting with the problem of selecting the most adequate learning model, considering trade-

offs of performance and available resources in wearable implementations, one can take the results

depicted in Figure 11.3, which unveiled that there is no SSD between the performance of all stan-

dard binary classification models in our tests for all considered sensor positions. If we describe
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model complexity as a function of its consumed resources and prediction expensiveness, one can

observe that there is no evidence that higher model complexity leads to improved results in the

conditions under which these tests took place. This means that selecting the least complex model

for implementation may be beneficial for the final system, because it shall lead to lower resource

consumption while achieving statistically similar results. If this conclusion is taken under consid-

eration at the moment of system design, there may not be a need to develop several fall detectors

with custom learning models to improve performance under different restrictions on the availabil-

ity of resources.

Figure 11.4 enables a discussion of the role of considering (or not) sole data from the intended

place of usage of the sensing device in the training stage. Our tests verified that the fall detection

performance on data from each of the 4 sensor positions is similar, regardless of its inclusion

in the training stage, using AICOS dataset. While this conclusion is not particularly surprising

for belt and pocket (both at the waist), or even chest (all in the trunk region), to achieve similar

performance for the wrist regardless of its consideration in the training stage is not intuitive. This

conclusion can reiterate a claim for position generalization of our method, even though further

tests should be conducted to thoroughly understand if there is a more significant impact for other

performance metrics. Moreover, to solely consider data from the intended sensor position to train

the models leads to statistically similar results than considering all positions as training data. As

such, it may be beneficial to consider all positions at the modeling stage, regardless of the effective

place of usage of the final system, so that its portability is facilitated under different conditions, if

needed.

From the rate impact study, one can conclude that the lowest sampling rate considered that

did not present SSD from the baseline 100 Hz pipeline was 10 Hz. This conclusion appears to be

coherent with findings of previous works (Liu et al., 2018), setting a valuable landmark in the field

of fall detection towards the efficiency of wearable systems.

11.3.2 State-of-the-art performance

The quality of the AICOS dataset, regarding its variety of usage positions, the representative

amount of samples for each position, and expression of relevant different types of falls and non-

falls, allowed us to deploy a robust Random Forest classifier trained with all usage positions of

this dataset for a target rate of 10 Hz, since no SSD were found between these models and models

trained considering higher sampling rates. This process based the conclusion that our framework

is able to deploy models that perform adequately when tested with data acquired under different

conditions (not controlled by the authors), as Table 11.3 corroborates.

The authors of the UMA dataset have achieved their best results for chest and belt (Santoyo-

Ramón et al., 2018), comparing with other usage positions, consistently with our findings, to which

we can add the pocket position in our case (performance similar to chest and belt). Moreover,

the geometric mean achieved in that work was always inferior to 75% for any combination that

included the sensor in the ankle, which means that even though our dataset did not feature any

sample acquired from the ankle position, our method still outperforms the method of the authors
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of the dataset at detecting falls in this position (79% geometric mean for the sole classification of

ankle samples).

Directly comparing previous studies with our user-independent approach is, however, a diffi-

cult task, since the validation methods previously reported are mostly user-dependent; thus, it is

unclear if these methods would lead to the same results under user-independent conditions, typ-

ically more challenging. The work of Wang et al. (2018) was the only study found employing

LOSO cross validation. Comparing that work with ours, one can verify that our method achieved

better results (geometric mean of 91% vs. 88%) for all positions considered in the UMA dataset.

However, the authors did not explicitly refer if all UMA dataset positions were considered to

evaluate their results.

It is also worth mentioning that the model that we have deployed was trained with data down-

sampled to 10 Hz, instead of using the most frequent sampling rate of the UMA dataset, 20 Hz. In

spite of that, the results obtained with our models are in line with those of other studies using the

same data.

11.3.3 Limitations

These conclusions may not be true for all datasets, but only for datasets similar to AICOS; they are

maybe only true due to the quality of our dataset, and the higher amount of samples for each usage

position, that allowed us to generalize better to new unseen positions. Moreover, these results were

obtained using the F1-score as the optimization score. One can also analyse all of the pipelines’

comparisons for other scoring metrics, and the conclusions found with the F1-score may not stand.

The model deployed by our framework retrieved from the pipeline described in this study should

also be validated with more datasets, and ideally with data from real fall events.

11.4 Conclusion

In this work, we studied the impact of learning models, on-body positioning and sampling rate

in fall detection performance, using a new machine learning pipeline which is able to deploy fall

detection solutions adapted to the aforementioned system requirements. Our experiments did not

verify any relation between model complexity and performance. Moreover, using our dataset and

method, considering 3 positions in the training set was enough for achieving model generalization

for the 4th (unseen) position, and considering solely data from a certain position vs. all positions

in the training stage led to statistically similar results when detecting falls at that position. We

were also able to decrease the sampling rate expected by our pipeline until 10 Hz without any

statistically significant impact in performance.

Finally, we used the UMAFall dataset to benchmark a solution deployed by our framework.

This solution is expected to receive data sampled at 10 Hz and uses a Random Forest classifier

previously trained with data from AICOS dataset. This experiment unveiled that our solution

led to state-of-the-art results for the UMAFall dataset, even under our demanding test conditions
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(considering an unseen test position, the ankle; lower sampling rate; test data acquired under

conditions not controlled by the authors).

As future work, we can optimize our pipeline for different performance metrics (other than

F1-score), to deploy models that require a specific trade-off between sensitivity and specificity.

For example, in a specific case or disease it can be more important to detect falls than to have a

higher rate of false alarms. This framework will ease the fast deployment of fall detection models

that are adjusted to different use cases. After selecting the most suitable model and the target

performance metric, we expect to implement our pipeline in a wearable solution to assess the

model’s performance in free-living conditions.
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Chapter 12

Conclusions and Future Work

12.1 Conclusions

Fall risk assessment is essential for establishing adequate strategies for fall prevention that could

help to revert or attenuate some of the fall risk factors among the elderly population. Recently,

researchers in this field have been proposing solutions for fall risk assessment based on low-cost

hardware, such as inertial sensors embedded into wearable devices or smartphones. Additionally,

there are other solutions based on force and pressure platforms, which aim to assess multiple fac-

tors of balance and correlated fall risks. The instrumentation of fall risk tests with these devices

allows extracting objective and relevant metrics to help provide more insights about the elderly

physical capabilities. Although fall prediction systems can contribute to preventing falls, the oc-

currence of falls is not only dependent on the physical stability of the users but also on external

perturbations. For this reason, the occurrence of falls is not always predictable. Therefore, it

is important to detect falls at the moment they occur, because immediate assistance after a fall

could decrease its negative effects. Automatic fall detection systems have been developed in the

past years and rely mostly on devices with integrated inertial sensors and location capabilities that

facilitate the detection and triggering of a fall alert.

This thesis focused on the study of a multifactorial fall prediction system and the study of a

wearable-based automatic fall detection system.

For the multifactorial fall prediction system, we focused on the study of feature extraction

methods based on the instrumentation of fall risk assessment tests and the study of data fusion

procedures to combine data sources, such as clinical, self-reported and sensor-retrieved data. The

main conclusions for the fall prediction study are detailed as follows:

• We employed signal processing methods for segmentation and feature extraction from sen-

sor data collected during the execution of instrumented functional tests. We presented the

data processing methods for extracting features from inertial sensors during the execution of

the iTUG test. For a small group of persons, we divided higher and lower fall risk persons

based on the POMA and TUG test scores. The number of previous falls did not show a sig-

nificant difference between high and low risk groups, whereas the sensors’ features showed
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significant differences between the high and the low fall risk groups. Although the sample

size was small, this study contributed towards the identification of a set of sensor-based fea-

tures that have higher predictive power than standard test scores or self-reported data (Silva

and Sousa, 2016).

• The previous study was extended by proposing signal processing methods for other func-

tional tests and we also included features extracted from a pressure platform. We compared

the performance of functional test scores with features obtained from inertial and pressure

platform sensors to discriminate between persons with low and high fall levels. To differ-

entiate the two groups we proposed a fall level, defined by us, that combines previous falls

questionnaire and the need for using a walking aid because these two variables have a higher

associated fall risk. Using the features extracted from the inertial sensors and pressure plat-

form we obtained better results for the same machine learning algorithms than using only

test scores. The Naïve Bayes classifier obtained an accuracy of 87.16% (88.18% of precision

and 97.50% of recall). We concluded that the added value of metrics derived from wearable

devices and the pressure platform has the potential to improve fall prediction systems (Silva

et al., 2017).

• We proposed a new multifactorial screening protocol for individuals aged above 50 years

old living in the community. The protocol combines clinical data, self-reported data, and

data from wearable inertial sensors and a pressure platform, which were used to instrument

six fall risk assessment tests: Timed-Up and Go Test, 30 seconds Sit-To-Stand test, 10-meter

Walking Speed test, "Modified" 4-Stage Balance test, Step test, and Handgrip Strength test

(Martins et al., 2018). This screening protocol was applied to 403 participants living in

Portugal, however, only a part of the population aged over 65 years old was taken into

consideration for analysis, resulting in a total of 281 participants. We were able to follow

them during 12-months to register their monthly occurrence of falls.

• The collected information allowed us to compare three data fusion approaches for prospec-

tive fall prediction based on the analysis of multimodal data collected according to the pre-

defined protocol. The richness of the collected data allowed to infer not only the functional

capabilities of a person but also clinical and environmental information. In this study, we

employed an oversampling technique to deal with the unbalanced nature of the collected

dataset, a procedure that is rarely reported in the literature for fall prediction. Furthermore,

we divided the dataset into a training set and a hold-out test set for model validation, some-

thing that has been lacking in previous research. We investigated the impact of fusing data

at different stages of the machine learning pipeline on the obtained results. We considered

the recall of the system more important than specificity since we foresee that correctly iden-

tifying a higher risk person is more relevant than the opposite. The early, late and slow

data fusion approaches revealed similar results in terms of fall prediction performance. To

the best of our knowledge, no previously published work has attempted to study different

approaches to data fusion using multiple sources of data for prospective fall prediction. The
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study also focused on several optimization stages in the ML pipeline, and the final results

are presented for a test set that was not considered during the evaluation of the trained mod-

els. The result of the late fusion approach providing a recall of 78.6% is better compared

with the results achieved by the other two approaches (Silva et al., 2020).

For the development of an automatic fall detection system, we considered the impact of

several variables in the performance of the system: the type of dataset, composed of simulated

or real-world data, the on-body positions to place the wearable device, and restrictions related

with the deployment hardware, such as sampling rate, algorithm’s sensitivity level, and models

complexity. The main conclusions for the several analyses made are described below:

• A transfer learning approach was presented for combining a dataset of simulated falls and

non-falls with the real-world FARSEEING dataset. Since most of the previous studies have

used simulated falls to develop the models, we studied the combination of simulated data,

acquired with younger and more active volunteers, with a small dataset of real-world falls,

acquired from hospitalized older persons. The combination of simulated and real-world

data allowed to train a set of supervised classifiers for discriminating between falls and non-

falls. In the real-world, falls are a sporadic event, which results in imbalanced datasets. To

overcome this issue, three methods of imbalanced learning were employed. The accuracy

obtained was very similar, but the Balance Cascade obtained fewer misclassifications in the

test set. Combined sets of simulated and real falls presented advantages compared to using

only simulated falls. There is an improvement when mixing datasets compared to the case

when only simulated falls were used for training. When models are tested with a mixed

set it is indeed more important to train with a mixed set. We have also concluded that a

model trained with simulated falls generalizes better when tested with real falls than the

opposite. The sensitivity obtained outperformed the one reported in the state-of-art with the

FARSEEING dataset by 10% (Silva et al., 2018).

• It was proposed a reliable, simple, and wearable solution for automatic fall detection, that

can be adapted to different groups of people with different fall risk levels. Also, it can be

used in different on-body positions, chest, pocket, and waist, without requiring any calibra-

tion step, which makes this system less intrusive and easier to use. The proposed solution is

based on a state machine algorithm and an optimization routine that allowed the model to be

adapted to different sensitivity levels, different sampling rates, and different on-body posi-

tions. We have taken into account hardware constraints that require a very simple algorithm

and impose implementation approximations for developing the algorithm. We concluded

that when decreasing the sampling rate of the accelerometer from 100 to 50 Hz, the perfor-

mance of the algorithm improves by 3 to 4% in the J index metric, for the three sensitivity

levels. We collected a continuous dataset of falls and ADLs to validate the algorithm in a

more realist approach. The algorithm trained with a sampling rate of 50 Hz obtained 6 false

alarms per day for the higher sensitivity level and 0.4 false alarms per day for the lower

sensitivity level, which compares favorably with previous works (Alves et al., 2019).
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• Finally, it was studied the impact of learning models, on-body positions and sampling rate in

fall detection performance, using a new machine learning pipeline that is able to deploy fall

detection algorithms adapted to the aforementioned system requirements. We propose a new

machine learning pipeline, trained with our proprietary AICOS dataset, with a customizable

modeling stage which enabled the assessment of performance over each combination of

custom parameters. By using our AICOS dataset, we did not find any evidence that higher

model complexity leads to higher performance. Moreover, using our dataset and pipeline,

considering three positions in the training set was enough for achieving model generaliza-

tion for the fourth unseen position. We also concluded that considering solely data from a

certain position vs. all positions in the training stage led to statistically similar results when

detecting falls at that position. We were also able to decrease the sampling rate expected

by our pipeline until 10 Hz without any statistically significant impact in performance. The

validation of this pipeline in the publicly available UMAFall dataset allowed the model to

generalize for a new unseen position that was not part of the training set, and also outper-

formed the previous state-of-art in terms of fall detection performance (geometric mean of

91% vs. 88%), considering a user-independent validation.

12.2 Future work

In the future, the work presented in the area of fall prediction could be used as a standard multi-

factorial fall prediction tool based on wearable devices, to provide a standard protocol to assess

elderly fall risk in the community. The added value of features extracted from wearable sensors

could enhance the healthcare professional assessment of physical conditions such as balance, mo-

bility and strength abilities, as well as personal and contextual information. The next step will be

to undertake the validation of such a system in a long-term trial, together with an industry part-

ner and a healthcare professional institution, to validate if the fall prediction is correlated with

the prospective falls occurrence. In terms of research work, we still have open issues to discuss,

concerning the study of other preprocessing methods for different data sources, and the addition

of variables that better explain the unexpected nature of a fall event, that could also be used as

the output of such fall prediction systems. Other possible outcomes are the predicted time until

the first fall (in months), or the probability of suffering a fall in a given period during the year

after the assessment. The problem can also be formulated as multiclass classification, allowing to

distinguish groups of first-time fallers after the assessment, recurrent fallers, and non-fallers, for

example. Moreover, we also consider combining both the fall prediction and the fall detection sys-

tems, in order to provide automatic detection of falls that can be used to validate the fall prediction

estimation.

In the area of fall detection, the work conducted towards the development of a low-power

wearable-based solution for automatic fall detection and the work developed for the automation

of the development of such systems taking into account several constraints will certainly be used

in future projects. We have made considerable efforts for transferring such technology to indus-
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try partners, we prospect the use of such systems for different use cases, as the use in different

hardware devices, or to be adapted to different on-body positions or use cases. Moreover, the

automation of such fall detection systems will allow us in the future to accelerate the deployment

of a fall detection system and to accelerate the time to prototype in further projects. We have also

been in contact with other partners to conduct a long-term trial for assessing this technology in

real-world conditions. This is one of the main goals for future work, to provide validation for this

technology in long-term trials with elderly, to assess in one hand the performance of the automatic

fall detection system and to validate the use cases previously defined, and in the other hand, to

collect data from real-world falls.
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