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Abstract

Some of our capacities and functional mechanisms tend to become impaired with aging. What
kind of impact can a fall have on someone’s life? Falls have major consequences over time and
may even lead to institutionalization or death. They carry high costs on treatment, not only for
the one that falls, but also to the public medical systems. It is possible to know who has a greater
risk for falling and then, through some intervention, avoid falls. Some examples of risk factors
for falls are: muscle weakness, poor gait/balance, and many others, having multiple factorial
sources and many measuring formats. A good combination and evaluation of risk factors is needed
to assess the risk for falling and an easy to apply, not time consuming with good accuracy and
precision solution that combines multiple factors is not yet in the ideal stage of development.
This work was developed in partnership with Fraunhofer Portugal AICOS. The Association has
developed a wireless device with inertial sensors that allows the extraction of movement metrics
during the evaluation tests of the risk factors along with balance metrics extracted with the pressure
platform developed by Sensing Future, partner of the FallSensing project. In the scope of the same
project, in partnership with ESTeSC – Coimbra Health School, data relative to the risk factors was
collected from various persons in various contexts and conditions. All the data collected was
stored on a database, including the data collected from the sensors and the information on the
occurrence of falls in the following six months after the initial collection of data. The objective of
the present work is to determine which are the most relevant factors and metrics from the sensors
and how they can be combined to distinguish between persons that will fall in the future from
the ones who won’t. The approach was based on the application of Machine Learning methods,
namely supervised learning classification algorithms, trying to understand which of the algorithms
and combination of methods would allow a better distinction between the group of people that
had fallen in the follow-up period from the remaining, having as basis the comparison of their
performance metrics.
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Resumo

Algumas das nossas capacidades e mecanismos funcionais tendem a ficar debilitadas com o en-
velhecimento. Que tipo de impacto é que uma queda pode ter na vida de alguém? As quedas
acarretam consequências graves e podem levar à institucionalização ou até mesmo à morte. Para
além disso, têm custos elevados, não só para a pessoa que cai, mas também para o sistema de saúde
nacional. É possível saber quem tem um maior risco de queda e, através de intervenções, evitá-
las. Alguns exemplos dos fatores de risco que influenciam a ocorrência de quedas são: fraqueza
muscular, presença de marcha/equilíbrio anormais, entre outros, tendo por isso uma origem mul-
tifatorial e sendo medidos em escalas variadas. Uma boa combinação e avaliação destes fatores
de risco são necessárias para determinar o risco de queda, mas uma solução de aplicação fácil e
rápida, com boa precisão, que permita quantificar o risco de queda ainda não existe num estado
ideal. A presente dissertação foi desenvolvida em parceria com a Fraunhofer Portugal AICOS.
A Associação desenvolveu um dispositivo sem fios com sensores inerciais que permite extrair
métricas de movimento nos testes de avaliação do risco de queda em conjunto com métricas de
equilíbrio extraídas da plataforma de pressões desenvolvida pela Sensing Future, parceira do pro-
jeto Fall Sensing. No âmbito do mesmo projeto e com a parceria da ESTeSC - Coimbra Health
School foram recolhidos dados relativos aos fatores de risco de várias pessoas, de vários contex-
tos e condições. Toda a informação recolhida foi concentrada numa base de dados, incluindo a
informação extraída pelos sensores bem como a informação da ocorrência de quedas nos 6 meses
seguintes à recolha dos dados. O objetivo desta dissertação é determinar quais são os fatores
e métricas mais relevantes dos sensores, compreender como devem ser combinados de forma a
permitir a distinção entre pessoas que provavelmente vão cair num futuro próximo daquelas que,
provavelmente, não vão cair. A abordagem baseou-se na aplicação de métodos de Machine Learn-
ing, nomeadamente de classificação supervisionada, na tentativa de perceber quais os algoritmos e
que combinação de métodos permitem melhor distinguir o grupo de pessoas que caiu nos 6 meses
seguintes das restantes, tendo como base a comparação das suas métricas de desempenho.
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Chapter 1

Introduction

1.1 Context

Elderly people tend to fall more often than younger people. Why does that happen? The answer

seems trivial as some of our capacities and body functions tend to become impaired with aging.

The world population is getting older... Can we give these persons’ good life conditions? What

kind of impact can a fall have on someone’s life?

To start, falls are a big problem for elderly people. More than just having consequences on

the moment of fall, they can have severe impact on the elderly future life. An injury, besides all

the consequences that it naturally has, can send them to the hospital, reducing their activity for a

long amount of time. This amount of time, in an elderly person, can have serious damage like an

even more accentuated decline on their mobility. Not to mention the actual severity of the injuries

on the moment of fall. It also increases their fear of falling. The elderly family is affected since

they will, probably, have to be more careful with the elder. It leads to a lot more problems than

it seems... It may lead to institutionalization and even death. More to this, it has lots of costs on

treatment, not only for the person that falls, but also to the medical system. [APH13]

It is possible to know who are the persons that have a greater risk of falling and then, through

some intervention, avoid falls. For that, to know who is more likely to fall, it is necessary to

identify the factors that increase their risk of falling. These factors can be body related (intrin-

sic), environment related (extrinsic) or related to some activities (behavior). Some of the most

important are:

• History of prior falls;

• Muscle weakness;

• Poor gait or balance;

• Visual impairment

• Arthritis

1
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• Functional limitation

• Depression

• Use of psychotropic medications

These tend to be some of the most important factors that affected the risk of falling as some

studies suggest. [APH13] [SVSC07]

There are some ways to quantify the risk factors. Using tests, for example:

• Through the Timed Up and Go test (TUG): This test evaluates the time someone needs to

get up from a chair, walk three meters, turn around and sit again. Through the measured time

it is possible to infer about how good and normal is the mobility of the person. [WLC05]

This is a really simple test. There are many others, some are just questionnaires and interviews

and other require the development of some physical activity. [APH13]

To get a real notion on the risk that one has of falling it is needed a combination of the most

relevant factors, since the presence of multiple risk factors increases the risk of falling exponen-

tially.

Some tools that evaluate multiple risk factors at a time in order to evaluate the real risk of

falling have been created. There is no single tool that is recommended for use in all settings and

for all populations. [SVSC07]

Some recent studies show that the incorporation of sensors in the execution of the physical

tests performed by the persons can improve the quality of the results obtained. Also, recent studies

started to analyze the impact that Machine Learning algorithms can have in the assessment of the

risk for falling although this field needs richer studying. This is further analyzed in 2.

Fraunhofer Portugal AICOS, a research center, is working on a project called FallSensing1.

This project is trying to enable the evaluation of multiple fall risk factors and the execution of fall

prevention exercise plans. They collected, in partnership with ESTeSC - Coimbra Health School,

information on risk factors from various persons (400) in various contexts. Some of the con-

ducted tests to collect information included the use of a wearable sensor that has been developed

at Fraunhofer that allowed the extraction of movement metrics and a pressure platform for balance

metrics. They are also following-up the persons that participated in the initial collection of data, to

understand which are the participants that have fallen after the initial information collection. This

created a great opportunity to further study the appliance of Machine Learning in screening tools

to assess the risk of falling.

1.2 Motivation and goals

As explained, this is a problematic question that is massively researched, as presented in 2, due

to its importance. This work intended to improve this research field, analyzing the applicability

1http://www.fraunhofer.pt/en/fraunhofer_portugal/news/news_archive/fallsensing-_
-technological-solution-for-fall-risk-screening-and.html

2
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of different machine learning algorithms in a screening tool to assess the risk of falling under-

standing which could lead to better results. The algorithms were tested on the dataset collected by

Fraunhofer and its partnerships, mentioned before, evaluated, perfected and compared with each

other and with other existing tools through their performance metrics. The achievement of a good

classification model could:

• Contribute to the development of a better assessment tool by Fraunhofer.

• Contribute to the development of a general better assessment tool that could help in the

identification of people with high risk for falling.

• Contribute to the diminish of the percentage of population that suffer from this problem.

• Save money to the medical system.

The more specific objectives that can be defined for this dissertation are:

• Build a classification model capable of predicting which participants can be classified as

being in the high risk for falls group (class 1) and which can be classified as being in the

low risk for falls group (class 0).

• Understand which is the better classification model to apply in this context.

• Understand if the dataset includes unnecessary information for the classification, such as

irrelevant tests.

• Understand if the use of sensors is profitable for the classification.

• Study several feature selection and balancing methods, proper to solve issues that occur in

the construction of Machine Learning models, understanding which could apply better to

this scenario.

• Study the general applicability of Machine Learning in this field.

1.3 Dissertation structure

In chapter 2 the existing assessment tools are described, starting by describing tools that are based

on one test, further explaining the ones that are based on multiple tests, the improvement obtained

with the use of sensors and the recent work that includes the application of Machine Learning.

Later on the chapter it is taken a deeper focus on Machine Learning, briefly explaining what it is,

in what fields it can be divided and several algorithms that cover its main domains of classification

(the type of problem addressed here). Follows an explanation of the several feature selection

methods that can be applied to the dataset, to favor the learning process, easing computational

effort and improving results. Another section describes several methods that can be applied to

the dataset in order to ease a problem called "class imbalance" that is derived from the different
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number of observations from the groups to classify. The chapter is ended by the explanation of the

process of evaluating a model and by describing briefly some of the existent Machine Learning

tools.

In chapter 3, it is described the dataset by first characterizing the participants of the study,

describing the tests they executed and how the results are represented in the database. The dataset

is then divided in a group of participants that had fallen after the collection of the information and

the group that hadn’t, presenting the statistical differences that exist between them. In the final

part of the chapter some major issues that the dataset has are presented, normal issues that make

part of a Machine Learning problem, and how they were treated in this work.

In chapter 4 it is described the approach to the problem. The tests that were made on each

algorithm are explained and the general flow of a test is explained step-by-step. It is also explained

specific characteristics of the application of the several algorithms.

In chapter 5 the results of the executed tests are presented, for each one of the set of experi-

ments described in the previous chapter.

Finally, the chapter 6 presents the main conclusions obtained in this work, by the analysis of

the results presented on the previous chapter. It is also explained future work that can be made in

order to improve what was achieved with this work.
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State of the art

2.1 Introduction

In this section some of the relevant tools for risk assessment and their major advantages and

disadvantages will be presented and analyzed.

This chapter goes from analyzing the evaluation of risk for falls through simple tests, explain-

ing multiple falls risk tests and the respective tools, explaining the use of sensors in the assessment

and finally the recent use of Machine Learning in this field. The final part of the chapter presents

a deeper description of Machine Learning and associated algorithms ending with how to evaluate

their performance and known tools that allow the application of machine learning processes.

2.1.1 Assessment tools based on one test

The necessity to correlate the results of the tests on the risk factors and the risk for falling surged

in order to predict who would be the persons that had greater tendency to fall and take proper

actions to avoid this negative occurrence. If a fall can be related to a specific risk factor, what is

its contribution to the assessment of the risk for falling?

Usually, developed tests to assess the risk for falling use a population of participants from

which is gathered their performance when executing the test. This is a sample population that is

used to understand the applicability of the test. After the collection of performances, it is then

started a follow-up period where the participants are accompanied in order to gather information

about which of them ended-up falling or not, usually six months or one year after the collection

of information. Having this, it is possible to start relating the performance of the participants

with their future falls, understanding better what specific performances indicate about the risk for

falling, these are also called prospective studies. Some studies are based on the number of falls

in a recent past, or prior history of falls in the last year, and these studies are frequently called

retrospective studies.

The Timed Up and Go test measures the time someone needs to stand up from a chair, walk

three meters and return to sit again. It carries both simplicity and ease of administration since

it only implies the use of a chair and a watch to count the time taken in the test. It is a clinical
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useful tool although it isn’t clear to the point of understanding what factors justify the time taken

to complete the test. [WLC05]

The Physiological Profile Assessment (PPA) is a tool that provides objective information about

the contribution of vision, peripheral sensation, muscle strength, reaction time and postural sway

to the risk for falling. It is an easy to apply tool in several settings. Many studies have been

made with the PPA. One revealed an accuracy of 79% in a prospective study with a follow-up

period of 1-year. The sample population was of 95 residents in an intermediate care hostel. Other

more comprehensive study of the PPA involved 414 community dwelling women and the results

obtained revealed an accuracy of 75%, it was also a study with a follow-up period of 1 year.

[LMT03]

The comparison between the TUG test and PPA was also studied, to understand if the TUG

could be a predictor of the PPA score. The study [WLC05] was made with 110 patients with a

mean age of 79.3 years in the falls clinic of the King’s College Hospital. Increased TUG test times

and the presence of cognitive impairment were correlated to PPA scores.

The main conclusion was that a cut-off-point of 15 seconds in the TUG test were the acceptable

maximum time that provided maximal sensitivity and acceptable specificity to identify patients

with marked PPA falls risk scores. Needing more than 15 seconds to finish the test showed that

the participant could be considered as having high risk for falling. This study ended up having

81% sensitivity and 39% specificity in the identification of the high falling risk group.

In an effort to understand how gait is associated with risk of falls a study was made in a cohort

of community residing adults. A base line assessment was made using a computerized walkway

with some embedded pressure sensors. This test is similar to the 10m-walk test (10MWT). The

10MWT measures the time, in seconds, that someone needs to walk 10 meters. Some gait variables

were computed. This study was made with a follow-up period of 41 months and, in each follow-

up assessment, information about the patient falls were recorded. At the end, 597 participants

were eligible and their data was analyzed. The main conclusions from this study were that gait

markers, independently, can strongly predict falls and a participant that had slow gait speed, below

70cm/s, had a 1.5 increased risk for falls when compared to people with normal gait speed. The

gait markers can be measured with the base line test. [VHLW09]

Trying to understand the performance measures that have the greatest potential to predict falls

in community-dwelling elderly adults, a study with participants from a senior’s citizens center was

conducted. There were 50 participants that were followed closely for 14 months after the initial

screening. The screening process included several tests. The data collected from the tests was

analyzed and screened with tests of collinearity. Pearson, point biserial and Phi correlations among

the variables were calculated and the cut-off values for each one of them was chosen based on the

best combination of sensitivity and specificity. For analysis only 11 participants were eligible

because they were considered as being "true fallers", they had fallen on the follow-up period and

this falls didn’t derive from an accident. The main conclusion from this prospective study is that

the timed floor transfer test (test that measures the time needed to move from a standing to a sitting

position and back to standing in seconds) and the timed 50ft walk-test (test that measures the time
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taken to walk 50ft) were the only significant variables that could correctly classify the participants.

A combination of these two measures leads to good sensitivity (81.8%) to predict the falls-group

and great specificity (100%) to predict the no-falls group. [MOPO03]

To understand how the performance of a person in the modified Romberg test, taking in ac-

count differences by age, gender and race, can be translated in a measure for predicting falls, a

study was conducted that analyzed the information on the performance of 4743 persons and com-

pared it with their recent past history of falls, in the past year. From 2001 until 2004, the National

Health and Nutrition Examination Survey (NHANHES) collected balance tests performances, in

the modified Romberg test, of 5086 adults who were 40 years or older. Prior to the testing, the

participants were presented to a questionnaire regarding history of falls in the previous year and

history of dizziness. The Romberg test evaluates the capacity of the participant to stand unassisted

under four test conditions, that test the sensory inputs that have influence on balance. The first

condition implied that the participant executed the test with eyes open, on a firm surface; the sec-

ond test condition implied that the participant executed the test with eyes closed, on a firm surface;

the third that the participant executed the test with eyes open, on a compliant surface; the fourth

and last implied that the participant executed the test with eyes closed, on a compliant surface.

From the initial number of participants, 4743 were eligible for data analysis. Considering the

time to failure as being the time someone needs to fail the test after initiating it, the authors used

logistic regression in order to compute the odds of falling related to the different times to failure

taken by the participants. This study made the connection between the time the participants took

to complete the test with their past history of falls and concluded that the probability of having

fallen in the past becomes extremely higher when time to failure is less than 20 seconds. Another

main conclusion is that most of the participants, independently of their gender and race, cross this

threshold by the time they were 60-69 years old. [ACH+11]

The main conclusions from these studies were combined in table 2.1.

These are some of the studies that tried to predict the capacity and how different performances

on the basic tests for risk factors can predict the inclusion of a participant in a "High-risk for falls

group" or in a "Low-risk for falls group". A lot of research has been made in this field so, due to

the large amount of available research, this is not intended to be an exhaustive listing.

2.1.2 Assessment tools based on multiple tests

Having as basis that the risk of falling increases with the number of risk factors that are present

[APH13], researchers started to develop tools and methods to combine multiple tests that examined

multiple risk factors. A brief overview of these tools is done in this section. These tools usually

assign a score to a person based on single scores that the person obtains in several single smaller

tests that evaluate different risk factors.

A tool named STRATIFY that allows the assessment of risk for falling is a clinical tool that can

be used in a hospital. Whenever a fall occurred in the center were this study occurred, the patient

primary nurse was interviewed. From this interview were extracted a list of 21 separate pieces of

information from which it was possible to understand which were the factors that most contributed
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Table 2.1: Comparison of assessment tools based on one test.

Test Population Type Conclusion Sensitivity Specificity Compared to

10min walk
Test

59
Follow-up from
September 2004

until February 2008

Gait speed below
70cm/s led to 1.5

increased risk for falls
- -

People with
normal

Gait and Speed

Romberg Test 4743
History of falls

in the past 12 months

Time to failure
below 20 seconds
means a more than
three-fold increase
in risk for falling

- - -

PPA 414
Follow-up of 1
year from the

initial screening
Accuracy of 75% - - -

Timed Up and
Go Test

110 -
Sensitivity: 81%
Specificity: 39%

81% 39% PPA

Combination of
floor transfer test
and Timed 50ft

walk-test

50
Follow-up of

14 months after
the initial screening

Floor Transfer Test:
Sensitivity: 64%

Specificity: 100%

Timed 50ft walk-test:
Sensitivity: 91%
Specificity: 70%

64%

91%

100%

70%

-

to the fall. In order to choose which variables to include in the assessment tool, odds ratios for all

differences were calculated. The assessment tool is composed of five questions. These questions

can be answered with a "yes" or "no". For each "yes" answer, the patient gets one more point

in its risk for falling score. A "no" answer maintains the score. The main conclusion from the

development of this tool is that, when it was applied in the clinical space were it was developed, a

risk score of 2 obtained with the tool had a sensitivity of 93% and a specificity of 88% in predicting

a fall in the week right after the occurrence of a fall. The tool was validated in a remote cohort

of 331 patients. The results showed a sensitivity of 92% and a specificity of 68% for a risk score

greater than 2. [OBS+97]

Another tool is the Falls Risk Assessment Tool (FRAT). A study that attempted to demonstrate

the reliability and validity of the tool is described next. The tool is divided in eight categories, with

each one of these categories receiving a specific value for each patient on evaluation. The final risk

score presented is based on the sum of those values. The categories are age, confusion/agitation,

elimination, history of falls, sensory impairment, activity and medications. The Committee that

developed the tool decided that for a person to be considered in a high risk for falls group it needed

to have a score higher than 10. This study was conducted with 89 patients in 6 medical/surgical

units. One of the conclusions from this study is that these categories combined are significant.

The main conclusion from this study is that this tool has sensitivity of 43% and specificity of 70%

[MSH96]. It was a study made on a small sample of participants.

A tool that is quick to administer in acute care is the Hendrich II Fall Risk Model. It assesses

the risk for falling in mental and emotional status, gender, dizziness and medications. It allows

the intervention on specific areas of risk and a final score equal or greater than five means that the

person evaluated is at a high risk for falling. This tool has a sensitivity of 74.9% and specificity of

73.9%. [Ann16]
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A study that aimed at evaluating the Mobility Interaction Fall (MIF) chart, compared the re-

sults to history of falls and to staff judgment. The study was done in Sweden with 208 residents

from residential care facilities, with a follow-up period of six months. The MIF chart includes

information of concentration rating, a vision test result and the capacity to walk while, at the same

time, interacting with another person. It is intended for use in residential facilities. The tool, in its

development stage had a sensitivity of 85% and a specificity of 82%. They wanted to understand

the accuracy of the MIF chart in an new sample. The time to the first fall for this population of 208

residents living in a residential care facility was analyzed. One of the conclusions of this study was

that the MIF has lower sensitivity and specificity than staff judgment and history of falls and also

lower scores when compared with the values obtained in its developing phase. The MIF sensitivity

dropped to 43% and the specificity to 69%. [LOJNG03]

Another tool that can be used in residential care facilities is the Downton Index. A study

that measured the predictive accuracy of this index at three, six and twelve months. This study

was done in a residential care facility and 78 residents participated with a follow-up process of

twelve months. This index can be viewed as a list of eleven items, each representing a risk for

falling, each worth 1 point. The index final score is obtained through the summing up of the points

of these eleven items. A score of three or more with this index is indicative of a high-risk for

falling. In this study the score was calculated by a physiotherapist. The number of falls for each

of the participants was stored in each follow-up procedure. With all falls included, the Downton

Index got highest sensitivity value at the 3 month base prediction with a value of 95% but a low

specificity of 35%. It is a study based on a small sample of 78 participants. [RLOK+03]

A web-based tool that uses a rule-based probabilistic logic program was developed, having

rules for each risk factor, in order to compute the risk for falling of a person through the input

of its health profile in a web browser. Its called FRAT-up. Some performance indicators were

computed and the results showed that it is a comparable tool to some other validated state-of-the-

art tools, having a receiver operating characteristic area under the curve (ROC AUC) of 0.642 and

a Brier score of 0.174. It is a tool directed to the community dwelling population. It has the basic

assumption that there is an independent contribution of the risk factors for the real, grouped, risk

for falling. Although, the tool compensates the fact that the assumption not always applies through

the use of synergy factors, different approaches could be investigated. Also, the tool could benefit

from validation in other datasets. [CPP+15]

The table 2.2 presents an overview on the conclusions made on these studies and reported

tools.

2.1.3 Assessment using sensors

To improve the results obtained from the tests and to surpass subjective scoring, sensors started to

be part of the assessments on the risk factors.

A study that tried to obtain more objective data from the TUG test started to understand the dif-

ferent stages of the test using some sensors, namely a triaxial accelerometer that gives information

about the movement on all the anteroposterior, vertical and lateral directions. To measure postural
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Table 2.2: Comparison of assessment tools based on multiple tests.

Tool Population Type Conclusion Sensitivity Specificity Compared to

STRATIFY 331 Clinical Tool
Score of 2 or higher indicates

high fall risk Applied
clinically with subjective questions

93% 88% -

FRAT 89 Clinical Tool
Score of 10 or higher

indicates high fall risk.
Small sample size

43% 70% -

Hendrich II
Fall Risk Model

- Clinical Tool
Score greater than 5

indicates high fall risk
74.9% 73.9% -

MIF 208
Applied in residential

care facility

It has lower sensitivity
and specificity than

staff judgement and history
of falls and that its

development phase version

43% 69%
Staff judgement
and history of

falls

Downton
Index

78
Applied in residential

care facility

Score of three or more
indicates high fall risk.
Based on small sample.
Best predictive values
for a base prediction

of 3 months.

95% 35% -

displacement, a gyroscope sensor that enables the measuring of angular velocities was used. The

use of these sensors allowed a better understanding of the different phases that compose the test.

This study was made in hemiplegic persons and led to the conclusion that the use of sensors can

lead to greater comprehension and enhanced results on the tests. [HYF+08]

A study that tried to move the clinical models for the assessment of risk for falling to a sur-

rogate technique that could be used in an unsupervised environment was tested in an attempt to

make the fall-risk assessment more broaden. They performed a routine of unsupervised physical

tasks with the help of triaxial accelerometer for movement characterization. The performance of

this model was compared with the PPA. This study was applied in 68 subjects that performed the

directed routine. They found a reasonable correlation between their assessment and the validated

PPA assessment with a value of p=0.81. [NRS+10]

To improve the correlation between this kind of test with triaxial accelerometry and to em-

power the deployment of home-monitoring systems, another study altered the way of analyzing

the data, incorporating features from spectral analysis and got a better correlation of p=0.96 with

the PPA. [LRW+11]

Further studies showed that the use of instrumented versions of tests, namely using accelerom-

etry could improve the utility of traditional tests, like the five-times-sit-to-stand test. A study on

40 community-dwelling older adults was conducted. The participants were categorized in fallers

or non-fallers based on their falling past history. The conclusion is that the use of body-worn sen-

sors can lead to better predictions and remove subjective conclusions in tests. Also, that it can be

used in unsupervised settings. Although it is a study that could benefit from a larger dataset and

additional analysis. [DFF+11]

In a similar way, a study analyzed the accelerometer-derived parameters of center of mass

(COM) displacement in order to identify older adults at risk of falling. Balance trials were per-

formed in groups of older people already categorized as fallers or non-fallers. During the execution

of the tests, the participants had a triaxial accelerometer secured to their lower back. The main
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conclusion was that the use of accelerometer based estimates of COM displacement may em-

power the quiet standing falls risk assessments and even enable its use in an unsupervised balance

assessment. [DMG+12]

A review of the literature in this field revealed that wearable devices using inertial sensor

technology, inexpensive and portable are capable of acting as fall risk assessments that can dis-

criminate between fallers and non-fallers. Further studies must be done to validate the usage of

these technologies in home settings with prospective methods in order to plan interventions. One

of the reviewed studies, with a sample size of 39 persons, based on prior history of falls, showed

that it was possible to distinguish between fallers and non-fallers using accelerometer-derived pa-

rameters with 74% accuracy, 80% specificity and 69% sensitivity. [ELD14]

Sensors are showing to be of great help in the assessment of the risk of falling leading to more

comprehensive and objective results.

2.1.4 Machine learning on falls

Recent studies started to incorporate machine learning algorithms in their process of understanding

how the risk for falling can be predicted having as basis the performance in specific tests.

A model that used Support Vector Machines (SVM) and sensors to differentiate between faller

and non-fallers was studied and compared with the Berg Balance Scale. Results show a mean

classification accuracy of 71.52% in a study sample of 120 community dwelling older adults.

[GMW+12]

In a way to improve the use of sensors a study was conducted which used a computer and

console games sensors on the tests. The signal from this sensors was analyzed and a feature

vector was computed. Feature selection algorithms (not specified) were also applied in order

to restrict the number of features used. The classifiers used were: The Naive Bayes (NB), the

locally weighted learning (LWL) classifier, the Adaboost classifier and the Dagging classifier.

The sample size was of 37 subjects and the study was based on their prior history of falls. The

application of methods resulted in an accuracy of 89.2% with the Dagging classifier. The more

accurate classifiers were the Dagging classifier and the Naive Bayes. [LTDRdS14] The study was

made on a small sample, with different sensors and different tests from the ones presented in this

work and was based on prior history of falls, being the presented work based on future falls.

A study that used a 3d motion capture system, the Vicon, extracted gait features from tests.

When the participants reached their comfortable walking speed, the system started to capture

data about the motion. Then, it was used machine learning algorithms in order to binary classify

participants as fallers (with falls in the past 12 months) or non-fallers (without falls in the past

12 months). The study sample was composed of 35 older adults. It was used the K-Nearest

Neighbor (KNN), Naive Bayes, Logistic Regression (LR), Neural Network (NN) and Support

Vector Machine. All the methods, except KNN, got accuracies of over 90%. The study requires a

larger number of participants and more features should be used. It is also based on prior history of

falls and not on future falls. [ZMF+15]
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A recent study, reported a statistical method for assessing fall risk using standard clinical

fall risk factors, and the combination of the same method with a fall risk assessment algorithm

with data from inertial sensors used in the execution of the TUG test. For the standard clinical

fall risk factors was developed a logistic regression model that classified the subjects according

to their falls history. From the data that included the information on the inertial sensors it was

used a regularized discriminant classifier model that outputted a statistical fall risk estimate. This

method was validated using prospective falls (two-year follow-up) and prior history of falls. For

the combination of the two methods the fall risk estimate is obtained by classifier combination,

averaging posterior probabilities calculated from the two. Based on a sample of 292 community

dwelling older adults, the study suggests that the combination of the clinical and sensor approach

show a classification accuracy of 76%, comparing to 73,6% for sensor only based approach and

68,8% for clinical risk factors only. The study also suggested that heterogeneity between cohorts

may be an issue for the generalization of this kind of tools. The validation of the sensor approach

in an independent cohort (22 community dwelling elders) showed an accuracy of 72,7%. [GRC16]

The main conclusions from the analysis of these studies are included in table 2.3. The study

that achieved highest performance in Accuracy was the study from Lin Zhang that achieved over

90% in Accuracy in all tested methods.

Table 2.3: Comparison of Machine Learning approaches

Study Population Sensors Algorithms applied Conclusion Accuracy
Barry R.

Green et al.
120

Pressure sensitive
platform and a body-worn inertial sensor

SVM
It was compared with

the Berg Balance Scale
71.52%

Patricio
Loncomilla et al.

37
Kinect, Wii balance

board and two Wii motion controllers

NB, LWL,
AdaBoostM1,

Dagging classifier

The more accurate
classifier was the

Dagging classifier.
Small sample size.

Based on prior
history of falls.

89.2%

Lin
Zhang et al.

35
Vicon (3d motion

system)
NB, NN,

SVM

Based on prior
history of falls.

Small sample size.

All methods
got accuracies

over 90%

Barry R.
Green et al.

292
Two wireless

inertial sensors

LR, Reguralized
Discriminant classifier

and a
combination of

the two

The combination
showed the best result.

76%

2.2 Applicability of Machine Learning in an Assessment tool

Machine Learning algorithms have started to be incorporated in the analysis of the test results and

in the prediction of the risk for falling.

Machine learning can be viewed as the effort to effectively make computers learn something.

Normally it is associated with systems that have tasks of diagnosis, prediction, recognition, plan-

ning and others related with artificial intelligence and gets its inspiration in fields like probability

and statistics, computational complexity, information theory, psychology and neurobiology, con-

trol theory, phylosophy and its always evolving. [Nil05] [Mit97]
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A Machine Learning system is a system that upon receiving some input information, processes

its characteristics and reaches a conclusion. Its said that it learns and learning involves a search

through a set of possible hypothesis to find the one that best represents the training examples and

prior constraints on knowledge that are presented to it. [Mit97] Machine learning can be broadly

divided in two fields based on the type of learning of the systems:

In supervised learning a training set is given to the system. This training set includes vectors

of input information and also the desired outputs. The system learns from the information, under-

standing how the input information can be transformed into the output. The main objective is that

when it is presented with new information from which it doesn’t know the output, it is capable of

producing the correct output. Supervised learning can be broadly divided in two sub-types: Clas-

sification and Regression. Classification is the sub-type that deals with discrete outputs, attributing

classes to the input information, whilst regression deals with continuous outputs.

In unsupervised learning the system tries to find clusters in the information that it receives on

some criterion. In this approach, the system has no prior knowledge of the information that it is

receiving neither about its structure and tries to find patterns in the input information.

Semi-supervised learning is a mix of the presented before learning types. The input data is a

mixture of information from which is known the desired output and data from which the output is

unknown.

The present work is concerned with supervised learning. The information to serve as input to

the systems is information on the results from the various tests conducted by the elderly popula-

tion, similar to the studies described before, and the outcome expected from these systems is the

classification of the participants as future fallers (high risk for falls, class 1) or non-fallers (low

risk for falls, class 0), a discrete output, being therefore a classification problem.

The next section presents a short description of classification algorithms from the field of

supervised learning that can be applied in this scenario.

2.3 Supervised classification algorithms

Before delving deeper in this section it is important to define and clarify some relevant definitions:

• Input data: The group of information that is introduced in the machine learning system.

Also mentioned as dataset.

• Observation: An instance from the information that is inputted to the system. In the studies

shown before, one observation can be viewed as the information relative to one participant.

It can also be known as instance, sample or example.

• Feature: One characteristic of the observations that are in the inputted information. For

example, participant (observation) X is 75 years old (the age of the participant as a feature).

• Label: The classification that is real or predicted for the observations. For example, in the

previous studies, one participant could be classified as non-faller or faller, this means that
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the label of the observation could be "non-faller" or "faller". It is the output of a classifier

model.

• Training set: The group of observations and respective labels that are used to train a system.

• Test set: The group of observations and respective predicted labels that are used to test the

performance of a system.

• Target function: Function that describes the possible relation between the inputted informa-

tion and the expected output.

• Hypothesis function: One function that approximates the target function.

• Space of hypothesis: The set of hypothesis that represent possible solutions to the learning

process. The goal of the process is to find the one that best approximates the target function.

• Bias: Measures how far the models predictions are from the correct value.

• Variance: Measures how a prediction for a certain observation may vary between different

builds of the classification model.

2.3.1 K-Nearest Neighbors

This algorithm tries to classify the information having as basis similar attributions made to the

training set (set used for learning). First, the algorithm evaluates if the k (passed parameter) more

similar training observations to the observation d (the one that it is trying to classify) are classified

as being part of class c and, if the answer is ”yes” to the majority of them, then the decision of

also identifying the observation d as being part of class c is taken. If not, the opposite decision is

taken. [Seb02]

The k similar observations are chosen based on the distance they have to the observation that

the algorithm is trying to classify. This distance is normally the Euclidean distance. If we consider

the observation as being described by the vector of features (information on the input set about the

observation):

(a1 (χ) ,a2 (χ) , ... an (χ))

And assuming ar (χ) as being the r feature of the instance X , then, the distance between two

instances χi and χ j is given by d (χi,χ j), then the distance is calculated as follows:

d (χi,χ j)≡

√
n

∑
r=1

(ar (χi)−ar (χ j))
2

Using euclidean distance. Other distance metrics can be used. [Kot07]

The value given by the algorithm is just the most common value of the target function f (χq)

for the nearest k training examples of χq
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If k is equal to 1, then we are presented to a special case of the algorithm, called the 1-Nearest

Neighbor. In this case it is assigned to the function the value of the training observation nearest to

the to be classified observation.

Algorithm:

• Construct a list of training observations. For each observation insert on the list
(
χ, fχ

)
• Having an observation χq to be classified and χ1...χk being the k observations from the

training observations nearest to χq, then the algorithm returns:

f̂ (χq)← argmax
v∈V

k

∑
i=1

δ (v, f (χi))

– Having δ (a,b) = 1 if a = b and δ (a,b) = 0 in the remaining cases.

It is possible to implement it for continuous valued target functions. For this it computes

the mean value of the k training examples instead of calculating the most common one. One

possible derivation of this algorithm is one that makes the calculation with a weighting factor.

This weighting factor can be calculated based on the distance of the neighbors, having a greater

weight the ones that are closer, for example.

This algorithm is based on the assumption that the classification of one instance is similar to

the one of its closer instances by a distance metric. The distances between observations includes

information on the observations attributes. This may lead to problems when dealing with instances

with lots of attributes due to increased computational costs. One possible approach to this problem

is to give different weights to different attributes when calculating distances or eliminating the least

relevant ones from the observation space. There are some methods in order to index the stored

training observations, so that identifying the nearest instances can be done in a more efficient way.

[Mit97]

A good choice of k must be made in order to get good results. This algorithm doesn’t have a

principled way for choosing k, except for the use of cross-validation (CV) and similar methods.

[Kot07][Mit97]

2.3.2 Naïve Bayes

This algorithm is based on a probabilistic approach to inference.

To start with, we need to explain what is the Bayes theorem, the basis of this algorithm. The

Bayes theorem can be translated in the following probability calculation:

posterior probability =
conditional probability× prior probability

evidence

Basically, what this theorem says is that the probability of an event given evidence can be

calculated with the previous formula. [Ras14]

This can be applied to machine learning. Having:
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P(h/D) =
P(D/h)×P(h)

P(D)

• P(h/D) - Posterior probability of having h hypothesis happen given the training data D.

• P(D/h) - Probability of seeing data D in a world where the hypothesis h happens - usually

also called likelihood

• P(h) - Prior Probability of holding the hypothesis h - usually also called class prior proba-

bility.

• P(D) - Prior probability that the data D will be observed

Providing P(D/h), P(h) and P(D) the P(h/D) can be calculated.

This algorithm assumes independence between all features. The likelihood of an observation being

classified in a class can be calculated multiplying the frequency of the attributes values that result

in that class on seen data. In the end of the process it is obtained a relative probability for each class

to be assigned and the one with greater probability is chosen for the observation in consideration.

2.3.3 Decision Trees

The approach of building a Decision Tree (DT) is known as "divide and conquer". It splits the

data into smaller subsets of similar groups. The algorithm begins at the root node (representation

of the entire dataset) choosing a feature that is more capable of determining the classification of

the observations. The first set of subtrees is created. This subset represents the group of distinct

values that the feature may assume. Then, the process of "divide and conquer" continues, always

choosing the best feature for the split, until some stopping criterion is reached. [Lan15]

The leaf nodes of the Decision Tree represent the classification of the observations in different

classes and the remaining nodes represent a test on some feature of the observations to be classified

(this nodes can be seen as "if-then" rules). Each one of the branches of the tree represents a value

that the feature may assume. [Mit97][Kot07]

The typical process of classifying an instance goes as follows:

• Starting at the root, a base feature of the observation is tested.

• The value of the feature determines the path followed for the subtrees. Depending on the

path followed, another feature is tested.

• New subtree is followed with tests to other features.

• When a leaf node is reached, the observation is classified

Having the Decision Tree example in figure 2.1, trying to classify the first instance:

• The "at1" for the first instance has the value "a1" so, following the branch with the "a1"

value, we reach the node "at2".

16



State of the art

Figure 2.1: Example Decision Tree[Kot07]

• "at2" has the value "a2" so, following the branch with the "a2" value, we reach the classifi-

cation of the instance to the class "Yes".

There are deviations of the base Decision Tree algorithm, the C4.5 algorithm and ID3, for

example.

One way to determine which feature to test at each node is by defining a statistical property that

can measure how good the feature is (alone) in determining the classification of the observations.

The ID3 algorithm, for example, uses this concept, determining which attribute to use for splitting

as it grows the tree. Then, the space of possible trees is searched through an hillclimbing technique,

in order to find the simpler acceptable tree. [Mit97]

The process of performing classification is usually developed in two phases. The first one is

"Tree Building" where the tree is generated as explained before and the other is "Tree Pruning".

"Tree Pruning" enables to prune the leaves that lead to worst results (classification of very few

observations). [DDZZ02]

Decision trees have good applicability on problems that have observations described with some

fixed set of features. They are also seen as being suitable for application with target functions

having discrete value outputs, although they can be expendable to be applicable on target functions

with real-valued outputs. They are robust, sustaining the presence of some errors on the features

and may even deal with missing features.

2.3.4 Random Forest

Random Forests (RF) can be seen as a collection of Decision Trees that vote for a final classifica-

tion. The splits of the trees are selected having as basis a randomly selected subset of features, as

opposite of what happens in traditional Decision Trees were the split is made on the full feature

set. [TG09]
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For the tree n that is being generated it is also generated a random vector γ that is independent

of the random vectors that were created before. The tree n is grown with the training set and the

random vector resulting in a classifier h(χ,γ) where χ is considered an input vector. [Bre01]

The process of creating the Decision Trees is finished. Each one of the trees reaches a classifi-

cation when processing an observation, just like a traditional Decision Tree. The final classification

is achieved counting the votes of the different trees of the forest. The majority of the votes wins

(in case of regression it is calculated the average value). [LW02]

In Random Forests there are two parameters to tune:

• t, being the number of trees to grow

• m, number of features to consider in the process of generating the Decision Trees.

Breiman suggested that a showed pratically good value for m is

log2 (M+1)

being M the total number of features. [Bre01]

Random Forests can achieve low bias and low variance and are fast in making predictions and

training, with good applicability for large problems. [TG09]

2.3.5 Support Vector Machines

The Support Vector Machines algorithm has as basis the principle of finding an hyperplane that

separates two classes. [XDL+08]

This algorithm was created based on the Vapnik–Chervonenkis Dimension. A set of func-

tions f (α) can show have the Vapnik–Chervonenkis Dimension property. Considering classifying

functions that recognize patterns in two classes, having a group of points that can be labeled in

all possible ways and that for each of the labellings there is a member of the f (α) that can do it

correctly, then we can say that the group of points can be shattered by the set of functions.

In order to understand the simpler application of this algorithm one needes to see the space

where the data is located as R2. In this space there are straight lines, and for each of the lines, all

the points that are on one side of it are labeled as being from class1 and on the ones that are on

the other side are labeled as being from class2 (class1 and class2 are different classes, used as

example). This group of lines is considered as being the set of functions f (α).

The region between the two zones where the observations are classified as being of each of

the classes is defined as an hyperplane. Hyperplanes separate observations (like the class1 and

class2). Considering that the distance from the plane to the closest class1 example is defined as

d (c1) and the distance from the plane to the closest class2 example is defined as d (c2) then we can

define the "margin" of this hyperplane as d (c1)+d (c2). There can be more than one hyperplane,

but what the algorithm will try to do is to find the one with the maximal "margin". This means that

the algorithm will search for the hyperplane that is further away from all the training data points,
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creating the best separation possible. To minimize the error it is needed to obtain the largest margin

possible.

The points that are in the hyperplane must satisfy the equation:

w× x+b = 0

• w - normal to the hyperplane.

• |b|/‖w‖ - perpendicular distance to the origin.

• ‖w‖ - norm of w.

The training data points that hold the following condition are considered as lying on one of

two parallel hyperplanes that make up the solution:

yi (χi ·w+b)−1≥ 0∀i

These points compose the called support vectors.

In order to find to solution the algorithm needs to minimize

‖w‖2

subject to the previous constraint. The figure 2.2 shows an example of a solution. Support vectors

are represented as the extra circles.

Figure 2.2: Support Vector Machine example, [Bur98]

Having this separating region, the algorithm can then classify observations as being from a

certain class if they are on one side of the region or classify them as being from the other class if

they are on the opposite side of the region.

Simpler Support Vector Machines, like the exemplified, can only classify data in a binary

basis, but this functionality can be expanded making it able to classify multi-class problems. An

in depth description of this algorithm can be found in the refereed tutorial. [Bur98]
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Figure 2.3: Neural Network example [BH00]

2.3.6 Neural Networks

Artificial Neural Networks try to be an abstraction of the biological neural networks of living

beings that allow the learning mechanism to occur.

These artificial neural networks are composed of artificial neurons, connected to each other.

These connections are weighted. Each of the artificial neurons receives an input from the environ-

ment, combines the input through calculations and then passes it through a threshold gate. When

the value calculated in the neuron, the "net" input ξ , is over the threshold limit defined it is said

that the neuron fires, becoming activated. Then, the output signal is transmitted to another artificial

neuron. The net input can be calculated as:

y =

{
1, i f ∑

n
i=1 wixi ≥ b

0, i f ∑
n
i=1 wixi < b

}

• n - number of input signals

• xi - input signal

• wi - weight

• 1 - on (can be a class if it is a classification problem)

• 0 - off (can be a class if it is a classification problem)

The artificial neural network can be seen as layers of neurons. This layers follow a sequence:

Input layer, hidden layers (don’t interact with the environment) and the output layer.

The training of the network happens by changing the value of the weights and the thresholds

in order to obtain a set of values that correspond to a global minimum. These weights are adjusted

in proportion to the error (difference) between the correct output and the neuron solution. There

are rules to control how these weights should be adjusted.

This learning process, that happens iteratively as the network is presented with training exam-

ples, implies changes, adaptations of the weights of the connections. The capacity to learn of the
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neural network depends on the architecture that it reflects and on the algorithm used to train it.

[YoS10]

The network can learn through supervised learning, being fed on correct answers or through

unsupervised learning, understanding the data, its structure and possible correlation between the

examples without any exterior intervention. It is also possible to combine both types of learning.

Neural networks can be applied to a lot of fields and problems, being predictive, recognition and

classification problems some in which it has shown good results. [BH00]

2.3.7 Convolutional Neural Network

This type of neural networks, Convolutional Neural Networks (CNN), are usually applied to the

processing of images, having shown great results in recognition problems. They are similar to

the normal neural networks, being composed of nodes and layers, although this networks show

different types of layers. The simpler convolutional networks can be viewed as the following

sequence of layers:

• Input layer - layer that holds the raw information, normally as convolutional neural networks

deal with image processing, this layer holds the pixels from the images to analyze.

• Constitutional layer - the output of the neurons on this layer (that are connected to specific

sub regions of the input) compute an output value, multiplying their weights to the small

region they are connected.

• Relu layer - layer that applies element wise activation functions.

• Pool layer - performs a down sampling operation.

• Full connected layer - as a normal neural network, the nodes from this layer are connected

to all the nodes in the previous layer. In this layer it is computed the final classification.

Convolutional neural networks can be trained using the same methodology of normal neural

networks [Duf07]. As this type of neural network has shown impressive results in the image

recognition field it is of interest to study its applicability to the problem in analysis. In order to do

this, the data that was analyzed needed to be represented as an image.

2.3.8 AdaBoost

A normally made assumption is that the training data is composed of independently and iden-

tically distributed observations from a probability distribution Prob(X ,C). The main objective

of a classification module is to find a classification rule C(x) from training data that allows a

new unseen input x to be correctly classified. Considering a Bayes classifier and its error rate

(1−EX maxkProb(C = k|X)), the expression:

C∗(x) = argmax
k

Prob(C = k|X = x)
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is used to minimize that rate.

The AdaBoost is an approximation of the Bayes classifier and what it does is an iterative pro-

cess that combines multiple weak classifiers. The weak classifiers can be, as example, several

decision trees. The AdaBoost learning process follows as: A normal process of classification un-

folds for a weak classifier, with the observation weights initially set to a specific value. If the

prediction with this base classifier originates misclassifications then the weight of each misclassi-

fied observation is boosted (increased). A second classifier is trained on the new weights and the

process is repeated until a certain number k of weak classifiers is trained. The final classification

is determined by the linear combination of the several classifiers.

AdaBoost has shown to be of great applicability in binary classification problems. [ZZRH09]

2.4 Selecting the best features

In this section it is described the problem of having an excess of features and what are some of the

methods that can be applied to surpass it.

It is important to make a good selection of the features retaining the ones that can play a deter-

minant role in the learning process and discard the remaining to save computational power and not

introduce noise. By reducing the space of features one reduces the size of the hypothesis space and

allows the algorithms to be more efficient and faster. It may improve the algorithm performance

and/or simplify the representation. [LCiL15] This process of choosing the appropriate features for

the problem at hand is called Feature Selection.

2.4.1 Algorithms and Methods for feature selection

There is a set of feature selection algorithms and methods that can be applied in order to reduce

the dimensionality of the Machine Learning problem faced. This section serves as a listing and

description of some of those methods.

2.4.1.1 Select Percentile

Some methods start by ranking the various features in one defined score and then proceed to the

choosing of the more interesting ones by comparing the score they obtained to a fixed threshold.

The ones that don’t satisfy the comparing condition eliminated.

The features can be ranked according to the value obtained in an f test, that determines if there

are differences between two group means 1 calculated between the class label and the feature itself.

The selection follows as a selection of a specified percentage of features. It can also be calculated

the mutual information between the features and the labels instead of the f-value, following the

remaining selection scheme.

The mutual information score can be seen as the amount of knowledge that one feature has

of another random feature. Considering one random variable it is possible to say that it includes

1http://libguides.library.kent.edu/SPSS/OneWayANOVA
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information about another random feature and therefore, seeing one allows to infer about the

other. Mathematically speaking, mutual information is the relative entropy that exists between the

joint distribution and product distribution of two variables. [CT91] The f-test score value is the

representation of the comparison of two variances in this case relating the feature that is being

analyzed with the class labels.

2.4.1.2 Select K Best

In the same logical thought, with this method features are ranked according to the same possible

scores and the top K features, with the highest K scores, get selected. The ones that are not in this

group get rejected.

2.4.1.3 Select False Positive Rate

This method, Select False Positive Rate (Select Fpr), basis its selection by controlling the total

amount of false detections through the false positive rate test (number of false positives in relation

to the actual number of negatives, as a ratio) and retains the features that show a score below a

specified threshold. The base scoring function can be the f-value and the mutual info score as well.

2.4.1.4 Select False Discovery Rate

This method, Select False Discovery Rate (Select Fdr), works in the same way as the previous

one, although instead of using the false positive rate it uses the false discovery rate (that is a

conceptualization of the rate type 1 errors, the incorrect rejection of a true null hypothesis, known

as false positives).

2.4.1.5 Select Family-wise Error Rate

This method, Select Family-wise Error Rate (Select Fwe), works in the same way as the previous

ones, although instead of using the false positive rate or the false discovery rate uses the family-

wise error rate, that determines the probability of getting a false positive result. The scoring base

scorer for this method can also be the f-value and the mutual information score.

2.4.1.6 Recursive Feature Elimination

This method, Recursive Feature Elimination (RFE), also focuses firstly in ranking the features

according to the ranking criterion:

wi = (µi(+)−µi(−))/(σi(+)+σi(−))

In this equation the µi represents the mean of the values of the features, the σi represents the

standard deviation and the + and - represent the classes for the samples i. The value of w can

be interpreted basically as being the correlation of the feature with the classes. If the value is
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highly negative it is more correlated with class (-), if the value is highly positive it shows a greater

correlation with class (+). In order to use this, a class predictor that functions with weighted voting

of the features. The voting scheme produces a classifier as in:

D(x) = w.(x−µ)

The w in this equation represents the weight and was already defined before. The µ represents the

mean vector over all training patterns as follows:

µ = (µ(+)+µ(−))/2

A change on the weight of a feature changes its impact in the cost function. This estimator works

by firstly assigning weights to each one of the features with a primary train and then, the features

which have the smallest heights get eliminated. The process gets repeated, recursively, until the

wanted number of features is achieved. [ABeÇ16]

2.4.1.7 Recursive Feature Elimination with Cross-Validation

The Recursive Feature Elimination with Cross-Validation (RFECV) is the same method as the one

presented before but using cross-validation to choose the best number of features.

2.4.1.8 Variance Threshold

This method focus on the removal of features that have low variance (don’t change much be-

tween all the samples) and so may not introduce richness to the classification process. It acts by

eliminating the features that show a variance below a specified threshold value.

2.4.1.9 Principal Component Analysis

The main goal of the Principal Component Analysis (PCA) is to extract the meaningful informa-

tion from a set of variables that are inter-correlated. It takes information from the initial set of

features and creates new ones (by linear combination of the first ones), called Principal Compo-

nents, that are able to express the same information. The objective is to reduce the size of the set

by creating fewer features than the initial ones. Normally, there are processing steps taken on the

dataset, approached as a matrix of samples by features, IxJ, the matrix X , prior to the application

of PCA. This steps include the centering of its columns, achieving a mean of 0 by column. There

are two types of PCA, the covariance PCA, where the features are divided by
√

I, being I the

identity matrix, because the XT X matrix is a covariance matrix. The other type of PCA is the

correlation PCA where the features appear with different scales and are standardize, divided each

one of them by its norm, because in this case XT X is a correlation matrix. Considering that the

sum of the squared elements of a column represents the column’s inertia, the application of PCA

requires that:

24



State of the art

• The first component found to show maximal variance, thus being the one that extracts most

of the inertia from the matrix.

• The following component to be orthogonal to the former, having the largest possible inertia.

• The other components are computed in the same way.

New variables are found for observations and are called factor scores that can be seen as projec-

tions of the samples in the principal components. The computations are applied in the singular

value decomposition of the matrix X :

X = P∆QT

Where P = IxL represents the matrix of the left singular vectors, with L being the rank of the

matrix, Q = JxL represents the matrix of the right singular vectors and ∆ the diagonal matrix of

singular values. [AW10]

2.4.1.10 Feature Agglomeration

This algorithm works by recursively merging clusters by features that minimize a criterion of

distance. This criterion can be variance, as an example, and the clusters get merged in a way that

they get minimal variance.

2.4.1.11 Manual Feature Selection

The last method can be basically seen as a junction of knowledge of the problem domain and

intuition in order to manually select the desired features, creating special subsets.

2.5 Imbalanced Scenario

Most algorithms need the class distributions to be balanced or, at least, to have equal misclassifi-

cation costs. If the algorithm is not fed with a dataset that presents this kind of characteristics than

it may fail to understand and represent the characteristics of the classes. [HG10]

Some important concepts that can be defined before delving deep in this chapter: the class

that has more samples in the dataset used for training is referenced from now on as being the

majority class; the class that has fewer samples is referenced as being the minority class; by

balanced dataset one understands that the dataset is composed of the same amount of samples

from both classes (since this is a binary classification problem); by opposition, an imbalanced

dataset is one that shows uneven number of samples from the classes. Samples that are borderline

are samples that are close to the boundaries between both classes, while noisy samples are samples

that, belonging to a certain class, situate themselves far inner the space of the opposite class by

having characteristics more common to the samples of that class. Samples that are redundant are

far away from the decision boundaries inside the space of their class and safe samples are the ones

worth keeping [KM97].
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In the domain of classification, an algorithm has always more tendency to predict new samples

as belonging to majority class that was used for training the algorithm. This can be explained since

the presence of induction rules describing the minority class characteristics are usually fewer and

less powerful than the ones from the majority class. [HG10] The imbalanced learning problem

can be faced from many perspectives and so, due to its importance, a lot of research has been

conducted in recent past. Following is a list of used approaches:

• Sampling approach: This approach intends to balance the distributions by removing samples

of the dataset or by creating new samples, either by copy of existing ones or through the

generation of new ones. Each approach has its own problems, but this methods have shown

good aplicability. [HG10]

• Cost Sensitive approach: While the first methods explore the balancing of distributions by

changing the amount of samples from the classes, this methods try to change the learning

process by assigning costs to wrong classifications forcing the model to reach better perfor-

mances.

• Ranking: This methods explore the comparison of samples, predicting which one should be

"preferred" instead of the others. This will be further explained later. Ranking surpasses

class imbalance since by comparing each observation from one class with all from the op-

posite the training process gets balanced. [CFCP16]

[HG10]

This work is centered on the two-class imbalanced learning problem.

2.5.1 Sampling methods

The sampling methods can be divided in groups by characteristics.

• Under-sampling methods: Consists in reducing the number of samples from the majority

class in order to reach balance.

• Over-sampling methods: Consists in increasing the number of samples from the minority

class in order to reach balance.

• Ensemble methods: Consists in creating successive subsets from the initial majority class

set and classifiers based on the combination of the subsets with the minority class, inside

ensembles.

• Combination of methods: Consists in joining methods in order to reach balance.
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2.5.1.1 Cluster Centroids

This algorithm performs under-sampling of the majority class by first discovering the K clusters

existent on the class and then substituting those clusters by their centroids, assuming that they

are new samples from the majority class, achieving a balanced dataset. It is therefore an under-

sampling algorithm.

2.5.1.2 Condensed Nearest Neighbour

This algorithm is based in the Condensed Nearest Neighbour rule. This rule is related to the nearest

neighbour rule which consists in classifying a sample as being from the same class as the class of

the nearest n examples that are already classified correctly. The condensed nearest neighbour rule

shows the same basic approach. A consistent subset is considered as being a subset that, under the

nearest neighbor rule, is capable of classifying correctly the remaining set. It can also be minimal

if it includes only the minimum necessary number of samples. The algorithm based on this rule

finds the subset of majority samples that are capable of attaining such characteristics as described

in [Har06]. This way it is possible to find the smaller subset of samples that is capable of describing

the characteristics of the majority class, eliminating the remaining. Thus, it is considered as an

algorithm of under-sampling.

2.5.1.3 Edited Nearest Neighbor

The Edited Nearest Neighbor (ENN) algorithm starts by creating a set S that is equal to the training

set and then, each instance in S gets removed if it does not agree with the majority of its k nearest

neighbors in terms of their classification, like the nearest neighbor rule described before. [Wil72]

This algorithm reduces the number of samples from the majority class by eliminating the ones

that don’t agree. Thus, it fits in the under-sampling type of algorithms working as an algorithm to

clean data.

2.5.1.4 Repeated Edited Nearest Neighbor

The Repeated Edited Nearest Neighbor (RENN) algorithm can be basically explained as being

an extension of the previous one, by applying the same process to the obtained subset in order

to obtain a further refined subset. This algorithm also fits the category of the under-sampling

algorithms.

2.5.1.5 All-K-Nearest Neighbor

The All-K-Nearest Neighbor (AllKNN) algorithm works by, having a value k and a sample, finding

the i nearest neighbours of the sample. If the majority of the nearest neighbours classifies the

sample incorrectly then the set gets a flag with value zero. While i is less than k the algorithm goes

on, repeating the process, with an increased by one value of i. At the end, the samples that got the
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flag equal to zero get eliminated [Tom76]. By decreasing the number of samples this algorithm

fits in the category of under-sampling algorithms.

2.5.1.6 Instance Hardness Threshold

Hardness stands as a property that represents how likely a sample will be misclassified when the

learner is trained on the other samples of the dataset. It works with a base estimator, for example

random forests, to allow the calculation of the hardness of the instances. This algorithm has as

objetive the reduction of the class overlap and instance hardness and to do so it eliminates the

samples that show an instance hardness value greater than a specified threshold [SMGC14]. This

algorithm is also considered as being from under-sampling category.

2.5.1.7 Near Miss

This algorithm has three operating possible versions. All of them have as basis the KNN algorithm,

already described to find the nearest neighbors of a sample:

• Version 1: Consists on the selection of the samples from the majority class that are closer

to some of the samples from the minority class, choosing the ones that show the smaller

average distance to three samples from the minority class.

• Version 2: In this version the samples that are close to all the samples from the opposing

class are selected. This is done by the calculation of their average distance to the three

farthest samples.

• Version 3: In this version a specified number of samples, from the majority class are cho-

sen relative to each one of the samples from the minority class, the ones that are closer,

guarantying that all the samples from the minority class are surrounded.

[ZM03]. All versions may be used to reduce the size of the majority class. It is also considered as

being an under-sampling algorithm.

2.5.1.8 Neighborhood Cleaning Rule

This algorithm is based on the Neighborhood Cleaning Rule (NCR). What it does, more than re-

ducing the size of the majority class, it concentrates on data cleaning by eliminating noisy samples.

Considering that T is the original data, that C is the class of interest and O the remaining data, the

algorithm applies in O the Wilson’s edited nearest neighbor rule that is capable of removing noisy

data by removing the examples which classification is different from the majority classification

from its three nearest neighbors. It also cleans C by removing the three nearest neighbors that

belong to O and misclassify examples of C. [Lau01] This algorithm is also considered as being

from the under-sampling type.
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2.5.1.9 Tomek Links

This algorithm works by removing Tomek Links (TL) in order to eliminate borderline samples. A

Tomek Link is a concept that can be defined basically as: considering two samples x and y, with

different labels (classes), if there is no other sample that is closer to one of the former, x and y, then

they are called a TL, which reflects that they are noisy or borderline. By removing these links, this

algorithm reduces the size of the majority class, thus being considered an under-sampling type of

algorithm that cleans data. [KM97]

2.5.1.10 One Sided Selection

This algorithm is based on the One Sided Selection (OSS) method. This method prunes samples

from the majority class in order to obtain a representative subset of the majority class. Being

so it is considered as being an under-sampling type of algorithm. The algorithm starts with the

creation of a special subset, C, of the training set, S, that includes all the minority samples and

only one randomly selected sample of the majority class. Then, re-classification of S occurs using

the samples in C applying the nearest neighbour rule considering only the nearest neighbour. The

training samples that are misclassified enter the set C. Then and finally, the majority class samples

that participate in Tomek links in C are removed. [KM97]

2.5.1.11 Random Under-sampling

This algorithm creates a subset, S, of the majority class, T , so that the probability of choosing

one sample from T to S is equal for all the samples. The subset is sized in order to balance the

class distributions. By reducing the number of samples from the majority class, this is an under-

sampling type of algorithm. [Lau01]

2.5.1.12 Random Over-sampling

This algorithm creates a set, S, from the minority class, T , by picking samples at random from

T and repeating them until the desired distribution of classes is achieved. The probability of

choosing one sample from T to S is equal for all the samples. By creating new samples through

replacement (repeating samples) the number of samples from the minority class increases, thus

this is an over-sampling algorithm. [Lau01]

2.5.1.13 Adaptive Synthetic Sampling

The Adaptive Synthetic Sampling (ADASYN) algorithm is based on the Adaptive Synthetic Sam-

pling approach, generating new synthetic data from the minority class. Since it generates new

data, it is classified as an over-sampling algorithm.

It starts by calculating the degree of existing class imbalance and the number of synthetic

samples that must be generated to balance the dataset. Then, for each sample of the minority class,

the k nearest neighbors (euclidean distance) are found and a ratio, defined as ri =∆i/K, i= 1, ...,ms
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is calculated, where ∆i is the number of samples in the k nearest neighbors from the focused

sample that belong to the majority class and ms is the number of samples from the minority class.

The ratios are normalized creating a density distribution. This density distribution represents the

distribution of weights for different minority class samples that lets the algorithm know how many

synthetic samples it must generate for each one of the samples from the minority class. This way

the generation goes according to the to level of learning difficulty of the minority samples, forcing

the algorithm to require more attention to the hardest to learn samples. Each one of the synthetic

samples is generated by randomly choosing one of the k nearest neighbors of the sample in focus

from the minority class and then occurs a fusing between the sample chosen from the neighbors

and the focused one, through vector calculus with a random number [HBGL08].

2.5.1.14 Synthetic Minority Over-sampling Technique

The Synthetic Minority Over-sampling Technique (SMOTE) algorithm works by creating new

synthetic samples for the minority class. It generates samples by joining all or some of the k

nearest neighbors of the sample in focus from the minority class. The generation is made as

follows: First is calculated the difference between the feature vector of the sample in focus and

its nearest neighbor, then the result is multiplied by a random number between 0 and 1 and added

to the sample in focus. It is similar to the previous algorithm but it generates an equal number of

samples for each one of the samples in the minority class. [CBHK02]

There are other versions of the SMOTE technique that focuses on the samples that are near

the border that divides the classes, the borderline samples from the minority class. These tech-

niques are called Borderline SMOTE 1 and Borderline SMOTE 2. There is another technique that

approximates the borderline by support vectors that came from the training of an SVM on the

training set called SVM-SMOTE.

2.5.1.15 SMOTE and ENN

This algorithm implements over-sampling through the application of SMOTE and then cleans the

data using the ENN, in a method denoted by SMOTEENN, all described previously. As this

algorithm combines two methods to balance the dataset it fits the type of combination of methods.

2.5.1.16 SMOTE and TL

This algorithm, as the previous one, works by applying over-sampling through SMOTE and then

removes Tomek links for data cleaning. This methods were described previously.

2.5.1.17 Easy Ensemble

This method performs under-sampling in a special way. The initial training set, T , is divided in

the subset of the majority class M, and in the set of the minority class L. The majority class M

gets divided, randomly, in subsets M′ that have the same size of L. Then, several base classifiers
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use each one of the M′ and the L set to train. Finaly all are combined in an ensemble of classifiers

that dictates the final classification [LWZ06]. This method fits in the ensemble methods category.

2.5.2 Cost-sensitive methods

The classification methods aim to minimize the misclassification of the samples. This assumes

that misclassification errors have all the same costs, which, in most real world applications, is not

true. Taking this work as an example, misclassifying one participant as a possible faller when he

won’t fall carries costs on treatment but doesn’t put the participant in danger. Misclassifying one

participant as not going to fall can be more dangerous since there wouldn’t be proper intervention

and the safety of the participant could be threatened. So, in terms of safety, one can conclude that

misclassifying a participant as not going to fall when he would fall is worse than classifying a

participant as going to fall when he wouldn’t. Thus, it is possible to approach this problem as a

cost-sensitive problem.

2.5.2.1 Cost-sensitive Random Forests

This method can be basically described as an ensemble of Cost-sensitive Decision Trees (CDST)

trained on random sub-samples of the training set. The final classification can be obtained with

majority voting, selecting the decision that has the highest number of votes from the base cost-

sensitive decision trees. Each one of the cost-sensitive decision trees uses costs during the training

and pruning phases of the tree growth.

Figure 2.4: Classification cost matrix, as in [BAO15]

In figure 2.4 is presented a cost matrix that shows the cost of predictions versus real classifica-

tions. Considering the sample-dependent cost statistic as:

Cost( f (x∗i )) = yi(ciCT Pi +(1− ci)CFNi)+(1− yi)(ciCFPi +(1− ci)CT Ni)

, where f is a classifier that predicts a sample i as being from class ci, yi as the true label of the

sample i and the remaing as costs from the matrix in 2.4.

The cost calculation is made for every node of a CDST and used as a splitting criteria. It is

also calculated the gain that is obtained with each split as the decrease of the total cost of the

algorithm. To measure impurity it is calculated the total cost considering that all samples from a
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leaf are classified as positive and, in other calculation, as negative, choosing the minimal of the

two. Then, it is calculated the gain obtained with the splitting rules.

The tree gets fully grown and pruned following the pruning criteria: PCc = Cost( f (S))−
Cost( f ∗(S)), considering that f ∗ is the tree without the pruned node. [BAO15]

2.5.3 Ranking methods

Ranking bases its approach by comparisons between samples to predict if the sample xi is "pre-

ferred" to the sample x j, denoted by xi � x j. There are different types of ranking: Pointwise: in

which the samples are trained individually and a score function determines their relevance; List-

wise: the training loss function has as basis all documents and scores; and Pairwise: in which each

sample is compared to all of the remaining and, if one is preferred, a scoring ranker is trained,

denoted by f , being a pairwise scoring ranker if xi � x j implies f (xi) > f (x j), or pairwise non-

scoring ranker if f is the one that decides which of the samples is preferred.

The pairwise rankers are trained assuring that, for a binary classification, having two samples

(xi,x j) and the class labels (yi,y j), a trasformation f is applied so that xi � x j if P(yi = 1)> P(yi =

1) and xi ≺ x j, in the opposite scenario. By convention, 1 is considered as being the minority class.

A recent study, [CFCP16], focused on pairwise rankers and achieved interesting results. The

study focused on three pairwise scoring rankers:

• RankSVM:

– Pre-processing: In this step, the dataset X is transformed to a new one X ′ such that

for every pair (i, j), the new dataset will include x′i j = xi−x j, considering that yi 6= y j,

with y′i j = yi.

– Training: A linear SVM is trained where the decision rule w ·(xi−x j)> 0 is viewed as

the scoring function that determines s(xi)> s(x j). The loss function is the hinge loss.

• RankBoost:

– Pre-processing: In this step the dataset becomes X ′ in which, for all combination (i, j)

and symmetric, X ′i j = xi,y′i j, such that y′i j represents the preference relation between

the samples, being y′i j = yi, omitting all the relation yi = y j.

– Training: Performs training on several base estimators, one at each iteration t, using a

distribution of weights for each pair, considering Di j = D ji. It is similar to AdaBoost

and the loss function is the exponential loss.

• RankNet:

– Pre-processing: In this step the dataset becomes X ′ in which, for all combination (i, j)

and symmetric, X ′i j = xi,y′i j, where y′i j represents the preference relation between the
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samples. This ranker, estimates y′i j by: y′i j = 0, i f yi < y j or y′i j = 1, i f yi > y j or

y′i j = 0.5, i f yi = y j.

– Training: Uses a neural network to estimate y′i j explained before. The loss function is

the logistics loss.

These methods show training times superior to those of ordinary classifiers due to the pre-

processing that occurs in data. The rankers produce a ranking score that is used to make the

prediction of classes using a threshold T . The authors maximized the f1-score, appropriate for

class imbalanced scenarios. After scoring and ordering by score the training data through si =

f (xi) the midpoints are selected, expressed as s′i =
si+si+1

2 . The midpoints are possible thresholds

T . The final T is chosen as being T = argmax
s′i

F1(s′i).

This approach was studied due to the interesting results obtained in the study [CFCP16], that

showed that these methods could perform better than their counterparts from the literature. The

implementation of these methods were kindly made available by the authors of the study.

2.6 Evaluating the performance of a classification model

To evaluate the performance of a model developed for a binary classification problem it is needed

to evaluate the correctness of the classification it produces. This correctness can be evaluated by

calculating the number of correctly classified observations (called true positives (TP)), calculate

the number of correctly classified observation that don’t belong to the class in focues (called true

negatives (TN)), the number of observations that were incorrectly classified has being from the

class in focus (called false positives (FP)) or that were misclassified as not belonging to the class

in focus (false negatives (FN)). This leads to the definition of the confusion matrix, a matrix that

represents this information as in figure 2.5.

Figure 2.5: Confusion Matrix, [BHG12]

• TP - true positive - observation that was classified as being part of the high risk for falls

class when it really is part of the high risk for falls class, as example.

• FP - false positive - observation that was classified as being part of the high risk for falls

class when actually it is not part of the high risk for falls class.

• TN - true negative - observation that was classified as not being part of the high risk for falls

class when actually is not part of the high risk for falls class.

• FN - false negative - observation that was classified as not being part of the high risk for

falls class when actually it is part of high risk for falls class.
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Some of the well-known measures that are good for evaluating binary-class problems (like the

one presented in this work) are the receiver operating characteristic area under the curve (ROC

AUC), since it measures the ability of the classifier to avoid false classification, the F1-score, that

translates the relation between the data labeled as positive and the positives given by the classifier,

accuracy (ACC), that represents the overall effectiveness of the classifier, precision (PRE), that

translates the agreement between the data labels and the positive labels given by the classifier,

and recall (REC), that represents how effectively the classifier can identify negative observations.

[GFLH09][SL09].

The performance measures can be calculated as follows:

• Accuracy - Overall effectiveness - T P+T N
T P+FN+FP+T N

• Precision - percentage that was classified as being from class1 and actually are - T P
T P+FP

• Recall (Sensitivity) - percentage of class1 observations that were classified as being so -
T P

T P+FN

• F1-score - combination of precision and recall - 2 precision.recall
precision+recall

• ROC AUC - capacity to avoid false classification - 1
2

( T P
T P+FN + T N

T N+FP

)
These performance measures can be calculated for the models developed with the proposed

algorithms. In the final phase of the work the algorithms can be compared, having as basis the

performance measures obtained on their evaluation. Conclusions can be assessed on which one of

them has greater capacity to make the classification.

2.7 Tools for machine learning

Following is presented a list of tools that can be used to build machine learning models.

2.7.1 Weka

The study [LTDRdS14] used the Weka2, an open source data mining toolkit. It is targeted for Java,

making available machine learning algorithms for regression, classification or clustering. It also

has available methods to process and present the data.

2.7.2 Rapidminer

The Rapidminer platform is another known tool used for machine learning 3. The main advantage

of this tool is that it has an easy to use graphical interface that allows the interation and building

of Machine Learning models in a drag-and-drop mechanism.

2http://www.cs.waikato.ac.nz/ml/weka/
3https://rapidminer.com/
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2.7.3 R

The R language4 is largely used for statistical computing and is also suitable for approaching

a Machine Learning problem, allied to machine learning libraries, like the caret library5, that

incorporates machine learning algorithms and methods that can be used to build predictive models.

2.7.4 Python

Python is another programming language that can be used for Machine Learning if allied to ex-

ternal libraries. One of its well-known Machine Learning libraries is the scikit-learn library6 that

incorporates the easiness and flexibility of Python with hundreds of algorithms and methods that

cover most of the fields from Machine Learning. It is doted with an impressive documentation7

that, more than presenting what the methods of the library do, also explains in detail the referenced

concepts of Machine Learning.

The work was developed using Python, in combination with the scikit-learn library, that makes

available the base methods, combined with the imbalanced-learn library8 that makes available the

methods to balance the dataset, the costcla library9 that makes available methods of classification

based on costs, the keras library10 that allows the implementation of neural networks and convolu-

tional neural networks (suitable to run on CPU or GPU), and for the ranking methods, as already

described, the methods developed by the authors of the study were kindly made available for use

in this work.

All of the libraries used followed the scikit-learn library structure and implementation of meth-

ods, which eased their application and combination. The flexibility and easiness of combination of

the methods of these libraries were of extreme importance due to the large number of combinations

tested.

4https://www.r-project.org/
5http://topepo.github.io/caret/index.html
6http://scikit-learn.org/stable/index.html
7http://scikit-learn.org/stable/user_guide.html
8http://contrib.scikit-learn.org/imbalanced-learn/api.html
9http://albahnsen.com/CostSensitiveClassification/

10https://keras.io/
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Chapter 3

The Dataset

The main focus of this chapter is the description of the dataset that was used for building the

Machine Learning classification models.

At first, it will be described how and what it represents, and later on some of its main char-

acteristics, related issues and how the dataset was preprocessed before the phase of building the

Machine Learning models.

3.1 Samples

In order to understand if and how it is possible to distinguish between the persons that probably

will fall in the future from the ones who won’t, the dataset used to train the models must include

information capable of describing characteristics of the two groups.

Fraunhofer Portugal AICOS in partnership with ESTeSC - Coimbra Health School, collected

data from 467 persons, in various environments: from people in the community, in day-care centers

and at nursing homes. All of them were voluntary participants with an informed consent. The

collected information included personal data, health related data, information on previous number

of falls and information collected on the execution of physical tests, described later, with the help

of sensors. [SMT+16]

3.2 Classification

From the initial collection of participants two groups were created. One group is characterized

as being the group of participants that, in a period of six months after the initial collection of

information, hadn’t fallen (being so in low risk for falls, may be mentioned as class 0) and the

other group is characterized as being the group of participants that had fallen in a period of six

months after the initial collection of information (being so in high risk for falls, may be mentioned

as class 1).

In order to have this kind of information, Fraunhofer and ESTeSC underwent a follow-up pro-

cess, in which the participants were accompanied, asked if they had fallen in the follow-up time
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period. After six months of the initial collection of information it was known the falling status of

292 participants. These 292 participants are acceptable for the Machine Learning models, since

the remaining 175 (from the initial 467) are unusable for the learning process (not having a known,

real, classification, needed in supervised learning models).

The dataset constructed, with information of the participants, must have diverse and rich

enough information so it would be possible to understand if a person’s representation is closer

to the representations from the group with high risk for falls or from the group with low risk for

falls. This is what the Machine Learning models tried to learn. The objective was that later, after

a successful learning phase, the models were capable of, through the input of new information of

unseen, participants, predict if they would probably fall in a near future.

3.3 Sample characteristics

The dataset, as mentioned before, is composed of information of 292 participants and the following

analysis focuses on these participants.

One participant is described by its personal information, being: participant’s age, gender,

height, weight, number of intaking medications (not being discriminated), number of health con-

ditions (not being discriminated), usage of walking aids and metrics evaluated in physical tests

(explained later).

The mean age of the participants is 71,67 years old, being the youngest participant 50 years

old and the oldest 95 years old. The majority of the participants (75%) are younger than 81 years

old and the most frequent age is 71 (15 participants).

Figure 3.1: Age histogram
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From the total number of participants, the majority, 195 (66,8%), are women and 97 (33,2%)

are men.

The mean height of the participants is 159,83cm high, being the tallest participant 178cm

and the shortest 129cm. The median height is 160cm which is also the most common height,

characteristic of 37 participants. The mean weight of the participants is 72,18kg, being the heaviest

110kg and the lightest 39kg. The most common weight among the participants is 70,0kg (22

participants) and the median is 72,0kg.

The presence of health conditions may have impact on one’s risk for falling. For this dataset,

149 participants (51,0%) don’t have any health condition, 92 (31,5%) have one health condition,

40 (13,7%) have two health conditions and 11 (3,8%) have three. None of these health conditions

is discriminated in the dataset, being only the total number of health conditions present. The use

of a walking aid is also relevant for the risk for falling since needing to use one may indicate an

abnormal gait or disability, for example. From the total number of participants, 241 (82,5%) don’t

need a walking aid, while 51 (17,5%) do.

3.3.1 Physical tests evaluated

More than the personal information described in the previous section, the dataset includes results

and statistics extracted from the sensors used on the execution of the tests. Some of the tests were

instrumented with an inertial sensor developed and assembled at Fraunhofer AICOS. For example,

the TUG test was conducted wearing the sensor at the lower back. The information was obtained

using its 3-axial accelerometer and 3-axis gyroscope.

Other tests were conducted using a pressure platform, the PhysioSensing platform (Sensing

Future Technilogies, Lda). The raw data from the sensors was already processed at the time of

execution of this work. [SMT+16]

Following is a description of the tests executed and the information that is stored in the

database for each one of them.

3.3.1.1 The Timed Up and Go

This test consists in measuring the time one participant needs to get up from a chair, walk three

meters in the fastest speed possible, turn around and walk back to sit again in the chair. The time

is measured in seconds and studies show that taking more than ten seconds to conclude the test

may indicate that the executer has a high risk for falling. [WLC05] [BFA+11] [MSS+16]

A set of examples of values of features extracted with the help of the sensors from this test,

represented on the database, is shown in table 3.1.

For this test, 79 features are stored for each participant. One of those features is the time the

participant needed to complete the test, the usual measure that is used to evaluate a person on this

test.
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Table 3.1: Example values of features from the TUG test stored in the database for two different
participants.

... tug_stand_mean tug_stand_median tug_stand_max tug_stand_min ...

... 9.30 9.24 13.39 8.28 ...

... 9.60 9.73 10.69 8.47 ...

3.3.1.2 30 Seconds Sit-to-Stand test, STS

In the 30 Seconds Sit-to-Stand (STS) test the participant is asked to execute as many as possible

full stand up positions beginning from a sited position. The number of repetitions made is counted

on a 30 seconds period.

Some of the conditions for the execution of this test indicate that the participant must be sited

in the middle of the chair with arms crossed at the chest and with its feet placed on the floor,

hip-width apart from each other. The usual score for this test is the number of STS cycles, which

is the sum of sit-to-stand and stand-to-sit cycles. [MSS+16] [CBKH12]

In table 3.2 is presented an example set of values of features that were extracted with the help

of sensors and are shown as they are stored in the database used.

Table 3.2: Example values of features from the 30 Seconds Sit-to-Stand test stored in the database
for two different participants

... sts_rms sts_stdDev sts_medianDev sts_iqr ...

... 9.33 1.08 1.08 0.46 ...

... 9.28 0.61 0.61 0.43 ...

For this test, 22 features are stored for each one of the participants. These group of features

includes also the number of transitions that the participant was able to complete, the usual score

measure for this test.

3.3.1.3 10 meter walk test

In this test it is measured the performance of one participant while he goes through a 10 meter

walk. This is done at the fastest pace possible and the participant may take 5 meters to accelerate

and 5 meters to decelerate. [PFK13] [MSS+16]

Some values of features are presented in table 3.3 as they are stored in the database to serve as

example of what is stored for each participant.

Table 3.3: Example values of features from the 10 meter walk test stored in the database for two
different participants

... walk10m_maxAVG walk10m_peakHeight walk10m_avgPeakHeight walk10m_meanCrossCount ...

... 15.17 15.00 9.10 131 ...

... 13.45 10.14 6.91 133 ...
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For this test, 23 features are stored in the database for each participant. One of the stored

features for this test is the time one takes to complete the test. [PFK13]

3.3.1.4 Step test

This test measures the performance of one participant in executing steps. To execute a step is to

place one foot onto a step and then back on the floor, as fast as possible, counting the number of

correct repetitions for 15 seconds. A score of less than 10 steps in 15 seconds implies high risk for

falls. [MSS+16]

Some values of features are shown in table 3.4 as an example of what is stored in the database

for this test for each one of the participants.

Table 3.4: Example values of features from the Step test stored in the database for two different
participants

... stepTest_fft_max_amp stepTest_energy stepTest_entropy stepTest_skewness ...

... 0.05 89.66 9.53 0.46 ...

... 0.03 89.28 9.53 - 0.38 ...

For this test 20 values of features are stored in the database for each one of the participants. In

this set of features is also included the number of steps that the participant was able to execute in

the 15 seconds period.

3.3.1.5 4 Stage Balance test "modified"

In the execution of this test the participants were asked to maintain four foot positions of balance

(side by side stance, semi-tandem stance, tandem stance and unipedal stance) for 10 seconds

without support, neither being able to change their position. From these four positions, the first

three were executed once with eyes open and then with eyes closed. So, for this test there were 7

different scenarios of test results (side by side stance with eyes open, side by side stance with eyes

closed, semi-tandem stance with eyes open, semi-tandem stance with eyes closed, tandem stance

with eyes open, tandem stance with eyes closed, unipedal stance with eyes open).

The participants were instructed to stand quietly on a pressure platform in order to take some

plantar pressure distributions measurements from their performance. [SMT+16] [TOG+14]

Some values of features are presented in table 3.5 as example of what is stored in the database

for each one of the participants.

Table 3.5: Example values of features from the 4 Stage Balance test stored in the database for two
different participants

... ex7_rmsX ex7_rmsY ex7_maxOscillationX ex7_minOscillationX ...

... 14.11 25.18 1.46 -1.34 ...

... 31.28 27.66 0.36 -2.03 ...
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For this test, 119 feature values are stored for each one of the participants, that corresponds

to a set of features extracted from the center of pressure for each one of the seven tests. The last

stage reached by the participant is also stored as one of the features.

3.3.1.6 X-Reach test

With this test it is possible to measure the capacity and stability of a participant by requiring him

to reach as far as possible from one central position: to the front left, the front right, back left and

back right. [New01]

As done before, some examples of values for some features of this test are presented in table

3.6. The numeration of the ’ex’ corresponds to different directions taken in the test execution.

Table 3.6: Example values of features from the Reach test stored in the database for two different
participants

... x_test_ex1_areaEllipse x_test_ex2_maxOscillation x_test_ex2_minOscillation x_test_ex2_meanCOPx ...

... 0.16 0.22 0.0 16.97 ...

... 0.13 0.24 0.0 19.60 ...

For this test 68 features are stored for each participant.

3.3.1.7 Grip Strength test

This test is used to measure the strength that the participant has and uses to grab objects. [RDM+11]

It is only stored one feature for this test for each participant that represents the strength of the

participant in kg. An example of what is stored in the database is presented in table 3.7.

Table 3.7: Example values of the feature from the Grip Strength test stored in the database for two
different participants

... gripStrength ...

... 14.0 ...

... 18.0 ...

This was the last test from the test suite. From the description of the various tests feature values

that are included in the database it is possible to conclude that there is a total of 340 features for

each one of the participants. Its relevant to say that the number of features per participant surpasses

the total number of eligible participants (292 participants). It is also observable that the different

features have different scales and that some may even assume negative values.

3.4 Importance of features

Different features have different impacts in the classification, some may have a greater importance

due to their contribution in distinguishing between the possible set of classes. For example (com-

pletely supposed example): It is probably intuitive to think that the fact that one person needs a
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walking aid to walk may be more relevant to the definition of their risk of falling than the fact that

their height is 164cm.

The different values that one feature may assume may make the decision boundaries of the

classification clearer, being so more important to the learning process than other features. This

importance is measurable. In an effort to understand the importance of the different features

present in this dataset an algorithm was applied, the Extra Trees Classifier implemented in the

scikit-learn 1 library, following the methodology proposed on [GEW06]. A forest of 250 trees was

grown and the importance of the different features averaged. In figure 3.2 are showed, as example,

the importance of the 25 most important features of the dataset, as determined by the algorithm.

Figure 3.2: Graph with the importance value of the 25 most important features

As shown in the graph, the height feature plays a more important role than the use of an

walking aid that doesn’t even appear in the top 25 most important features as suggested by the

application of the algorithm.

3.4.1 Statistical differences in groups

There should exist some difference between the samples of the two classes in order for the Ma-

chine Learning models to learn the classification mechanism with this dataset. Therefore, a sta-

1http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
ExtraTreesClassifier.html
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tistical analysis was conducted to check if statistical significant difference exists. As presented in

[Rux06], the Welch’s t-test can be used to, having as basis samples from two groups, check if their

central tendencies are different. Assuming an alpha level of 0.05, if the p-value calculated with the

Welch’s t-test for a feature is lower than alpha (0.05) it is possible to reject the null hypothesis that

the value of a certain feature has equal means for both populations. There were 250 samples from

the class 0 (did not fall in the six months following the evaluation) and 42 samples from the class

1 (have fallen in the six months after the evaluation). The two groups show unequal sample sizes

and variances for the feature values which led to the application of the Welch’s t-test in alternative

to the Student’s t-test. The process of analysis went as follows:

• Division of samples from the database in two groups (manual division by classes)

• Statistical analysis of the values for each feature for the two groups

• Application of the Welch’s t-test

• Understanding which of the features show statistical differences between the two groups of

samples.

An example of the analysis on the feature ex1_meanCOPx and on the feature ex2_maxOscillationX

are presented in table 3.8.

Table 3.8: Example of the statistical analysis made on the values of the feature ex1_meanCOPx
and ex2_maxOcillationX for the class 0 and for the class 1

Feature Group of Class 0 Group of Class 1 t-value p-value Conclusion
Mean: 19.196 Mean: 18.870

Standard Deviation: 2.074 Standard Deviation: 1.950

Minimum: 11.43 Minimum: 13.985

5-th percentile: 15.913 5-th percentile: 15.513

Q1: 18.051 Q1: 17.814

Median: 19.287 Median: 19.032

Q3: 20.391 Q3: 20.175

95-th percentile: 22.564 95-th percentile: 21.599

ex1_meanCOPx

Maximum: 26.051 Maximum: 22.203

0.966 0.338

p-value > 0.05

Differences are

not statistically

significant

Mean: 0.332 Mean: 0.259

Standard Deviation: 0.427 Standard Deviation: 0.133

Minimum: -1 Minimum: 0.06

5-th percentile: 0.07 5-th percentile: 0.07

Q1: 0.147 Q1: 0.172

Median: 0.235 Median: 0.25

Q3: 0.41 Q3: 0.33

95-th percentile: 0.845 95-th percentile: 0.477

ex2_maxOscillationX

Maximum: 4.82 Maximum: 0.7

2.117 0.035

p-value < 0.05

Differences are

statistically

significant
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From a space of 340 features, 125 (37%) showed statistically significant differences between

the two groups, the group of people that fallen and the ones that didn’t.

3.4.2 Relevant Issues

When building Machine Learning models one must follow successive tasks. The first task is un-

derstanding the dataset that will be fed into the learning process, understanding the representation

of its feature values and the problems that it may carry. Next follows a task of pre-processing the

dataset, where the problems revealed in the first step are overcomed and the dataset is prepared for

the construction of the Machine Learning models.

The issues that the dataset carries may make it impossible for the model to complete the

learning process or make the classification boundaries unclear. This is common when dealing

with real world data such as the one presented in this work. This section serves to present the

faced issues relative to the dataset used and how they were surpassed.

3.4.2.1 Missing Values

Some datasets may not contain all the information for each one of the samples that it describes.

This may arise for many reasons:

• Non-existent information

• Inability to collect the information

• Errors in information collection that led to missing values

• Other causes

The inexistence of information may induce bias in the learning process or even prevent it from

occurring at all depending on the adopted model.

For the presented dataset in particular, there are some values that are absent since the partici-

pant was unable to conclude the test. For example, if the participant was unable to complete the

TUG test, then the feature that represents the time taken by the participant to conclude the test is

empty in the database. There are some ways to deal with missing values, and, as in the literature,

there is no single approach that appears to rule over the others [JMGL+10]. Some approaches

could be:

• Removing the features or the samples that show missing values:

– As mentioned before, there are 340 feature values for each one of the 292 participants.

This means that there are 99 280 (292*340) feature values stored in the database.

From these, there are 10 216 values missing. These missing values are relative to
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many features and occur for various samples. Eliminating completely the features that

show missing values for some of the samples can have severe impact in the learning

process since 332 from 340 features would be eliminated for all the samples.

One sample that has only one missing value for a specific feature may not affect greatly

the learning process, but one sample that shows a large portion of missing features, for

example, appears as having missing values for 75% of the features, may be inconclu-

sive for the learning process or may induce the introduction of bias if not treated the

right way. Because of this, every sample that showed more than 50% of missing val-

ues of features (170 missing values) was removed from the presented dataset by being

considered inconclusive. This reflected the removal of 12 samples from the dataset.

All of the removed samples were from the class that didn’t fall in the follow-up period

(class 0).

• Replacing the missing values by a meaningful value:

– Missing values are valuable in this scenario since they reflect the lack of capacity of the

participant to conclude the test and this may reflect deficient functional mechanisms

and an increased tendency to fall, although all the samples that were removed due to

having too much missing values didn’t correspond to the class that did fall.

One missing value can be replaced by a specific value outside the range of the feature,

for example by -1, but, since all the features have different ranges in this scenario,

some being negative, it could lead to the introduction of wrong information.

One possible solution is substituting by the worst possible performance on the test

(since missing indicates inability to conclude the test).

Table 3.9: Relation between scores obtained in the tests and the risk for falling

Test Score Risk for falling
Timed Up and Go + Time + Risk

10m walk + Time + Risk

30 Seconds Sit to Stand - Repetitions + Risk

4 Stage Balance - Positions + Risk

Step Test - Steps + Risk

Grip Strength - kg + Risk

X-Reach Test - cm + Risk

Table 3.9 shows the relation between the magnitude of a test result with the risk for

falling. It should be interpreted for the 30 Seconds Sit to Stand test, as example: "If the

participant has done few repetitions of the exercise then it probably has a greater risk

for falling. The smaller the number of repetitions, the greater the risk". Some of these

scores are represented in the database as features for each one of the samples and some

of these scores are not present for some samples, being considered missing values.
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The missing values for these scores are substituted by the worst possible result, for

example, if a participant has as missing value the score on the 30 Seconds Sit to Stand

test then it gets substituted by the worst possible result, 0 repetitions. The missing

values for other features that represent metrics extracted from the sensors for which

the worst possible result is not known got substituted by the mean value of the feature

for all the samples in the dataset. This is done in order to introduce the minimum

possible bias in the learning process.

3.4.2.2 Outlier observations

There is a set of normal patterns that is present in groups of data. A dataset used in Machine

Learning models show these normal patterns but some samples may be composed of characteristics

that step outside this normal pattern zone.

Figure 3.3: Boxplot of the values assumed by all the samples on the feature rmsY from one of the
4 Stage Balance test positions
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In figure 3.3 is an example of outlier values for the feature ex1_rmsY that some samples

assume in this dataset. They are represented by circles in the boxplot. The green line represents

the median and the outer lines represent the distribution in quartiles. If one sample is characterized

by many outlier values for its features then it may be considered as being an outlier.

This group of outlier samples in a dataset may prejudice the learning process. A method

was applied in order to remove these outliers from the dataset, the Isolation Forest algorithm.

This algorithm, as described in [LTZ08], is capable of understanding that the anomalies are fewer

instances and that their values differ greatly from the considered normal instances, being isolated

from them. The method shows advantages such as:

• It doesn’t utilize distance or density measures and so doesn’t have major computational

costs

• Showing linear time complexity and low memory consumption

• Being capable of handling high-dimensional problems which is the scenario of this problem

The model takes two arguments, the number of trees in the ensemble and the size of the sub-

sampling. The algorithm builds an ensemble of binary trees, being the structure of each one of

them defined through recursive partitioning. In each partitioning step, consisting on the selection

of a random attribute and a random p value for that attribute, the samples get divided in two groups

(one that shows a p value greater than the chosen and another group that shows a p value smaller

than the chosen one). From this division the tree grows on new branches.

The process of growth is affected by a stop condition, for example an height limit for the tree.

If a sample is in a node near the root it means that it is more deviated from the other samples, in

other words, it is more isolated and was easier to separate.

This process of defining outliers goes as finding the samples that are closer to the root nodes

averaging the ensemble of trees. [LTZ08]

A forest of 100 Isolation Trees was grown in order to find the outliers of the presented dataset.

In figure 3.4 is presented, as example, a tree from the ensemble of trees obtained with this

method. It was randomly chosen the feature tug_time_to_stand as the first attribute at the random

split value of 0.6235. The samples that assumed a value smaller than the chosen one got on the

left child node of the root node (the process continued in this branch) and only one sample got a

superior value. The one that got a superior value stayed in the condition of the right child node of

the root node. It is possible to conclude that it got isolated. If this sample appears in many trees of

the ensemble, so close to the root node, it may be chosen as an outlier sample.

The application of this method led to the discovery of 19 outlier samples that were removed

from the dataset used for training. From these 19 outliers, 15 corresponded to samples from the

class 0 (didn’t fall in the follow-up period) and 4 to samples from the class 1 (fallen in the follow-

up period).
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Figure 3.4: Example of a tree present in the ensemble

3.4.2.3 Excess of features and correlation

One of the problems that datasets may present is the excessive number of features that they gather.

Some of the features may be redundant or even irrelevant and prejudice the learning process.

While one algorithm may work fine in low dimensional input it may be unable to generalize

when the input gets high-dimensional. In this scenario specifically there are 340 features for

each one of the 292 participants. The number of features is greater than the number of samples

themselves. An excessive number of features may not introduce new relevant information that

enrich the ability of differentiating the classes and may actually introduce values of noise in the

learning process and prevent it from occur correctly [Dom12].

There are some methods to choose the best features for the problem at hands, as already

described, many have been applied to the dataset, as described later.

There is a large amount of features that are correlated with each other. While this fact may

not prejudice the learning process, a feature that is highly correlated with another probably does

not add new valuable information that is already expressed by the former. Being so, they can be

removed in order to save computational effort and resources.
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It was used the pandas profiling2 library that uses as basis the method from the pandas library3

to calculate correlation between features. This method calculates the Pearson’s correlation coef-

ficient 4, that reveals the existence of statistical linear correlation between every two features of

the dataset. The value of linear correlation may vary from -1 to 1, where 1 represents total linear

correlation and -1 represents negative linear correlation. The method was used in order to select

and eliminate the features that showed more than 0.9 in Pearson’s correlation (highly correlated).

From the whole dataset with 340 features, 134 features (39%) show a Pearson correlation with

other features above the threshold of 0.9. From the highly correlated features, 50 were from the

4 Stage Balance test (42% of the features from this test), nine were from the Step Test (45% of

the features from this test), nine were from the 30 Seconds Sit-to-Stand test (41% of features from

this test), 36 were from the Timed Up and Go test (46% of features from this test), 14 were from

the 10 Meter Walk test (61% of features from this test) and 16 were from the X-Reach test (24%

of features from this test).

3.4.2.4 Imbalanced Scenario

One last problem faced when working with the presented dataset was the fact that it is imbalanced.

By imbalanced it should be understood that the dataset has more samples from one class (the

majority class) relatively to the second class (minority class).

Most of the algorithms expect even class distributions. If they have to handle imbalanced data

sets they may fail to understand the distributive characteristics of the data and so reach unfavorable

results. This field research is a hot topic due to its major importance which reflects the big number

of publications made in the last years [HG10]. The dataset used is highly imbalanced, presenting,

after the removal of outliers and samples that had excessive missing values: 223 samples from

class 0 (low risk for falls) and 38 samples from class 1 (high risk for falls). The approach to this

issue is further described in a following chapter.

2https://pypi.python.org/pypi/pandas-profiling
3http://pandas.pydata.org
4http://libguides.library.kent.edu/SPSS/PearsonCorr
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Chapter 4

Approaching the problem

As mentioned earlier, one of the objectives of this work was to analyze the applicability of different

Machine Learning classifiers to the problem at hand, understanding which one could lead to better

results by comparison of their scores on performance. Therefore, the work went as by trying the

most combinations of methods possible with later comparison of their performance. For that, the

tools, as described in 2.7, were used. Each test made followed the general workflow present in 4.1.

Figure 4.1: General workflow adopted
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This chapter goes by first describing which tests were conducted, then describing each step of

the workflow presented in 4.1 used in each test, ending by explaining specific characteristics of

the application of each algorithm.

4.1 Process step-by-step

Trying to maximize the number of tests and combination of methods with the algorithms, sev-

eral tests were made for each one of the applied algorithms: Decision Trees, Random Forests,

K-Nearest Neighbors, Support Vector Machines, Naive Bayes, AdaBoost, Neural Networks, Con-

volutional Neural Networks, Cost Sensitive Random Forests, RankSVM, RankBoost, RankNet

and Easy Ensemble. All of these algorithms were already described.

For each one of the algorithms the following tests were conducted to compare their perfor-

mance:

• Test with no methods to balance the dataset or to choose features. One test.

• Tests with all methods described in the imbalanced section 2.5 with no other method. Sev-

enteen tests in total for each algorithm.

• Tests with all feature selection methods described earlier in 2.4.1 with no other method.

Twenty-five tests in total for each algorithm.

• Tests with the combination of the best performing method for balancing the dataset with all

feature selection methods to check if performance is improved. Twenty-five tests in total for

each algorithm.

• Test the combination of the best performing method for balancing the dataset with all sets

of features manually selected (as described in 4.1.3). Twenty-six tests in total for each

algorithm.

In figure 4.2 is presented the type of tests that were described in a graphical way. For each one

of the tests, the steps described next were executed.

4.1.1 Step 1: Loading the dataset

Prior to the application of the classification algorithms, scripts that allowed data loading/parsing

to an adequate structure from the database (csv files) to create the dataset were implemented and

executed. The dataset was then loaded to a python dataframe structure with the help of the pandas

library1.

1http://pandas.pydata.org/
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Figure 4.2: Type of tests executed.

4.1.2 Step 2: Preprocessing the dataset

After loading the dataset, it needed to be pre-processed in order to be accepted by the classification

model. This step can be further divided in smaller sub-steps:

• Removing samples that present an excess of missing values and replacing the remaining

missing ones: As already described in 3.4.2.1, this leads to the removal of 12 samples from

the class that didn’t fall, the missing values of the conventional scores which meaning is

known got substituted by the worst possible result and the remaining missing values for

metrics of the sensors which scales are unknown got substituted by the mean value of the

dataset, to avoid bias.

• Removing highly correlated features: As already described in 3.4.2.3, applying this proce-

dure to the whole dataset leads to the removal of 134 features as described earlier.

• Normalizing the dataset: It consists on making all feature values assume the same scale

without losing information for the learning process. This favors the classifier work. This

step is done with a scikit-learn method, as described in the documentation2. The method

was set to normalize the dataset by making all features assume a norm equal to one as by

the l2-norm definition. The l2-norm of a vector is calculated by squaring all the elements of

the vector, summing the squared values and then calculating the square root of the sum.

These steps sum up the conducted pre-processing phase.

2http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
Normalizer.html
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4.1.3 Step 3: Feature selection / Balancing approach

At this point manual feature selection is applied (if the test includes manual feature selection) to

determine, manually, which features go through the learning process. If other traditional feature

selection methods were to be applied in a specific test, then the manual feature selection process

would not occur. The execution of manual feature selection at this point emerged from having

the possibility of understanding the impact of different physical tests (as described in 3.3.1) in the

classification process, understanding which are more important and which are redundant. One of

the manually selected sets includes only the features that showed to be statistically different (as

described in 3.4.1) and other only the conventional scores of the tests that are traditionally used to

classify possible fallers. The different sets that could be chosen by manual feature selection are

described in table 4.1.

Before delving deeper on this step one must understand the concept of pipeline used by the

scikit-learn library and used in these tests. As described in the documentation3, a pipeline allows

the definition of a sequence of steps, with a final estimator, a classifier for example. More than

that, it allows the definition of different sets of parameters to be applied to the intermediate steps

of the pipeline.

If the test at hands used a feature selection method then it was applied in this step as a starting

point. It is independently applied in order to be applied to the validation set V , later described.

After the feature selection process occurs (either manual or with traditional methods), two

steps occur:

• Division in sub-sets: The complete dataset is divided in Train and Test set, T , with 70%

of the database entries randomly selected, and Validation set V , remaining 30% of database

entries. This usually happens in order to save part of the cases that have not been used in the

learning process of the classifier, in set V , to evaluate the performance of the model in new

cases. The Train and Test set T will be divided for training and testing the model in a later

step. To do this, a method from scikit-learn was used, as described in the documentation4,

that randomly divides arrays in train and test sets. The random seed is fixed in order to

produce the same sets for all tests, to improve the performance comparison.

• Removal of outlier samples: As already described in 3.4.2.2, 19 outlier samples were found

on the training set T and were removed. From these 19 outliers, 15 corresponded to samples

from the class 0 (didn’t fall in the follow-up period) and 4 to samples from the class 1 (fallen

in the follow-up period). The set V is not searched if it includes outliers since it represents

real-world information, that may include outliers.

After reducing the number of features and diving the main set, if a balancing method is used,

it is inserted in a pipeline as an intermediate step.

3http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
4http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_

test_split.html
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Table 4.1: Obtained sets by manual feature selection

Set Features included Set Features Included
1 Personal information as de-

scribed in 3.3
15 Combination of set 1 and 8 (Per-

sonal information + Reach test)
2 Features of the STS test as de-

scribed in 3.3.1.2
16 Features of all tests and personal

information. Complete dataset
3 Features of the TUG test as de-

scribed in 3.3.1.1
17 All but Reach test

4 Features of the 10MW test as de-
scribed in 3.3.1.3

18 All but 4 Stage Balance test

5 Features of the Step test as de-
scribed in 3.3.1.4

19 All but Grip Strength test

6 Features of the Grip Strength
test as described in 3.3.1.7

20 All but Step test

7 Features of the 4 Stage Balance
test as described in 3.3.1.5

21 All but 10MW test

8 Features of the X-Reach test as
described in 3.3.1.6

22 All but TUG test

9 Combination of set 1 and 2 (Per-
sonal information + STS test)

23 All but STS test

10 Combination of set 1 and 3 (Per-
sonal information + TUG test)

24 All but personal information

11 Combination of set 1 and 4 (Per-
sonal information + 10MW test)

25 Features that showed to be statis-
tically different as described in
3.4.1

12 Combination of set 1 and 5 (Per-
sonal information + Step test)

26 Traditional test scores

13 Combination of set 1 and 6
(Personal information + Grip
Strength test)

27 Traditional test scores and per-
sonal information

14 Combination of set 1 and 7 (Per-
sonal information + 4 Stage Bal-
ance test)

For example, in a test that uses the feature selection method Variance Threshold and, as bal-

ancing method, Random Under-Sampling, then the Variance Threshold is applied and the pipeline

is initiated with an instance of the balancing method preceded by the step name. The imbalanced-

learn library has its implementation of the pipeline allowing the introduction of balancing methods

in a pipeline in scikit-learn style5.

5http://contrib.scikit-learn.org/imbalanced-learn/generated/imblearn.pipeline.
Pipeline.html
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4.1.4 Step 4: Model application with hyper-parameters search

At this point the algorithm in testing is added to the pipeline as the final estimator. Adding to the

previous example a random forest classifier leads to the pipeline:

1 estimators = [("random_undersampling", RandomUnderSampler())

2 ,("rf",RandomForestClassifier())]

3 pipe = Pipeline(estimators)

Another interesting and valuable method available in the scikit-learn is the gridsearch method6,

that allows the choosing of the best hyper-parameters (the parameters used in the methods) through

cross-validation to train the model. It also has the capability of receiving a pipeline and search

for the best combination of parameters for all intermediate steps. It chooses the combination of

parameters that produces the best performance of the model, according to a passed metric scoring

function. This method tests all possible combinations of parameters and may take an excessive

amount of time to complete the training process.

Another method, the RandomizedSearchCV7, does the same operation, but instead of search-

ing through all possible combination of parameters, it searches only for k combinations of parame-

ters, reducing training times drastically and maintaining quality in the choosing process, as shown

in the documentation8. The RandomizedSearchCV performs stratified cross-validation, which

works by the same principle as cross-validation but divides the set maintaining the percentage of

samples in each class (the set is already balanced when RandomizedSearchCV is applied so the

sub-sets retain 50% of samples from each class).

Earlier was mentioned that the T set would be further divided in train and test sets. This hap-

pens with the application of the RandomizedSearchCV and its stratified cross-validation approach.

To feed RandomizedSearchCV with possible parameters for the methods application, a grid with

possible parameters must be created. After the definition of the possible set of parameters to be

searched, the method is set to maximize the receiver operating characteristic area under the curve,

ROC AUC, scoring metric. This metric is used because it has showed to be a good performance

evaluator for binary-classification problems [SL09]. Then, the parameters that maximize the scor-

ing metric are chosen and the model is finally trained. The parameters for the balancing methods

are also defined and searched.

1 params_grid = dict(rf__n_estimators=[5, 10, 50, 150],

2 rf__criterion=[’gini’, ’entropy’],

3 rf__max_features=[None, ’auto’, ’sqrt’, ’log2’],

4 rf__max_depth=[None],

6http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

7http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
RandomizedSearchCV.html

8http://scikit-learn.org/stable/auto_examples/model_selection/randomized_search.
html
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5 rf__min_samples_split=[2, 5, 10],

6 rf__min_samples_leaf=[1, 5],

7 rf__max_leaf_nodes=[None],

8 rf__min_impurity_split=[0.00000005, 0.0000001, 0.0000002,

0.0000003],

9 rf__bootstrap=[True],

10 rf__oob_score=[False],

11 rf__random_state=[None],

12 rf__warm_start=[False],

13 rf__class_weight=[’balanced’, ’balanced_subsample’, None],

14 rf__n_jobs=[-1])

15

16 random_search=RandomizedSearchCV(estimator=pipe,param_distributions=params_grid,

n_iter=2000,n_jobs=-1, cv=5,scoring=’roc_auc’)

17 random_search.fit(datafra.X_train, datafra.y_train)

Here is a basic example of a possible training of a Random Forest, after the application of the

variance threshold method and random under-sampling, searching through 2000 combinations of

parameters (defined in params_grid) using stratified cross validation with a k of five to choose

the combination that maximizes the ROC AUC scoring metric with the RandomizedSearchCV

method.

4.1.5 Step 5: Performance evaluation

After ending the training process the model is evaluated, making predictions on the validation set

V that was put aside earlier in the process. By comparing the predicted classifications made by

the model with the real classifications of the samples in the validation set V some performance

metrics are calculated and stored in a file. The metrics stored are: accuracy, f1-score, precision,

recall, ROC AUC and the confusion matrix that represents the number of TP, TN, FP and FN. It is

also stored the best combination of parameters obtained by RandomizedSearchCV when suitable.

The validation set is composed of 93 samples, being 13 from the class 1 (high risk for falls)

and 80 from the class 0 (low risk for falls). The validation set is unbalanced so the scores for

precision, recall and f1 were made as weighted calculations, taking in account the different number

of samples from each class.

4.1.6 Test characteristics by algorithm

In this subsection, parameters and specific deviations from the standard process defined previously

are explained for the application of each one of the algorithms. The possible set of parameters

passed to RandomizedSearchCV for each of the non-deviating algorithms is presented in A (do

not forget that parameters for the balancing methods were also searched at the same time): for

Decision Trees in A.0.1, for Random Forests in A.0.2, for K-Nearest Neighbors in A.0.3, for

Support Vector Machines in A.0.4, for Naive Bayes in A.0.5, for AdaBoost in A.0.6 and for

RankSVM in A.0.7.
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4.1.6.1 Cost Sensitive Random Forests

The training of Cost Sensitive Random Forests is different because it receives as input a cost matrix

to adapt the learning process, as described in 2.5.2.1.

Assuming that it is worse to have a participant that will fall being classified as won’t fall than

the opposite scenario, it is possible to conclude that the cost of getting False Negatives is bigger

than the cost of getting False Positives. With this in mind, two versions of the cost matrix were

created:

• One with relatively low costs for FP and FN as in 4.2.

Table 4.2: Cost matrix for version one of the test

Actual Positive Actual Negative
Predicted Positive C_T P = 0 C_FP = 1

Predicted Negative C_FN = 3 C_T N = 0

• Another with high costs for FP and FN as in 4.3.

Table 4.3: Cost matrix for version two of the test

Actual Positive Actual Negative
Predicted Positive C_T P = 0 C_FP = 25

Predicted Negative C_FN = 90 C_T N = 0

The possible set of parameters fed to the RandomizedSearchCV were:

1 params_rf = dict(rf__n_estimators=[25],

2 rf__combination=[’majority_voting’],

3 rf__max_features=[0.8],

4 rf__pruned=[True],

5 rf__n_jobs=[-1])

The training of this algorithm took a lot of time. The tests included the combination of all feature

selection and balancing methods with the Cost Sensitive Random Forests.

4.1.6.2 RankNet

This version was not applicable in a pipeline that would also include the balancing methods so it

was not inserted in one. Two versions of this algorithm were applied, one that included 10 hidden

nodes, and other that included 50 hidden nodes to test different variations of internal node density.

The tests included the combination of feature selection and balancing methods with the RankNet.

58



Approaching the problem

4.1.6.3 RankBoost

The same way, this algorithm was not included in a pipeline with the balancing method. It was

tested a version that included 100 base estimators (Decision Trees). The tests included the combi-

nation of feature selection and balancing methods with RankBoost.

4.1.6.4 Neural Networks

As for the implementation of the Neural Network algorithm, it was used the keras library9, and

built a KerasClassifier of type Sequential that allowed the insertion of the neural network in the

pipeline, which could be used for hiper-parameters search. The hyper-parameters used for the pos-

sible combinations were thought to allow flexibility, permitting that the hyper-parameters search

would have influence in the architecture of the network itself. Therefore, the parameters for the

network hyper-parameter search were the following:

1 size = [X_train.shape[1]]

2

3 params_grid = dict(nn__batch_size=[5,10,50,100]

4 ,nn__epochs=[50, 100]

5 ,nn__optimizer=[’SGD’, ’RMSprop’, ’Adagrad’, ’Adadelta’, ’Adam’,

’Adamax’, ’Nadam’]

6 ,nn__init_mode=[’uniform’, ’lecun_uniform’, ’normal’, ’zero’, ’

glorot_normal’, ’glorot_uniform’,’he_normal’, ’he_uniform’]

7 ,nn__activation1=[’softmax’, ’softplus’, ’softsign’, ’relu’, ’

tanh’, ’sigmoid’, ’hard_sigmoid’, ’linear’]

8 ,nn__activation2=[’softmax’, ’softplus’, ’softsign’, ’relu’, ’

tanh’, ’sigmoid’, ’hard_sigmoid’,’linear’]

9 ,nn__activation3=[’softmax’, ’softplus’, ’softsign’, ’relu’, ’

tanh’, ’sigmoid’, ’hard_sigmoid’,’linear’]

10 ,nn__dropout_rate=[0.1, 0.3, 0.5, 0.7, 0.9]

11 ,nn__weight_constraint=[1, 3, 5]

12 ,nn__size=size

13 ,nn__nr_layer=[1, 2, 3]

14 ,nn__nodes_hidden=[50, 25]

These parameters would affect the creation of the network through the following process of creat-

ing a keras sequential model10:

1 #Function to create the network architecture

2 def create_model_mlp(nr_layer=3, nodes_hidden=50, optimizer=’adam’, init_mode=’

uniform’, activation1=’relu’,activation2=’relu’, activation3=’relu’,

dropout_rate=0.0, weight_constraint=0, size=93):

3 # It’s a keras sequential model

9urlhttps://keras.io/scikit-learn-api/
10https://keras.io/getting-started/sequential-model-guide/
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4 model = Sequential()

5 # Creating the inital layer with parameters from the hyper-parameter search

6 model.add(Dense(62,activation=activation1,kernel_initializer=init_mode,

input_shape=(size,),kernel_constraint=maxnorm(weight_constraint)))

7 model.add(Dropout(dropout_rate))

8 # Adding the internal layers, being the number of layers also defined in the

hyper-search

9 for i in range(1, nr_layer):

10 model.add(Dense(nodes_hidden,activation=activation2,kernel_initializer=

init_mode))

11 model.add(Dropout(dropout_rate))

12 # Adding the final layer that ends the binary classification

13 model.add(Dense(1,activation=activation3,kernel_initializer=init_mode))

14 model.compile(optimizer=optimizer,loss=’binary_crossentropy’,metrics=[’accuracy

’])

The tests also included the combination of feature selection and balancing methods with the net-

work.

4.1.6.5 Convolutional Neural Networks

It is needed a large amount of samples to train a Convolutional Neural Network from scratch. One

possible approach to surpass this problem is through the method of Transfer Learning that consists

in retraining a network that was already trained for other related problem. If adopted properly, it

could diminish the amount of time taken to train the model while achieving good results.

The keras library11 allows such application of the method12. It distributes some complex ar-

chitectures of networks and allows to have them pre-trained, setting their weights as if they were

trained on the ImageNet13 database (a database with hundreds of samples, used to train CNN’s in

image classification). In this work the archictecture InceptionV3 was adopted since it is computa-

tional effective when compared with denser models while using less parameters [SVI+15].

This problem is not based in images, but it is possible to transform the available dataset into

images, transforming each sample in a different image where different tonalities represent different

characteristics. Each sample is scaled to show values between zero and one, and then reshaped in

order to assume the representation of a matrix where a colormap14, from the matplotlib library15,

with the attribute "gist_earth" is applied. The final result for a sample is presented in 4.3 as an

example.

In the first step of the Transfer Learning process, to re-train the model, only the top layers

from the InceptionV3 are retrained, adapting to the new images that it received. The convolutional

layers were frozen during the process. The bottom convolutional layers of the model got retrained

11https://keras.io/
12https://keras.io/applications/
13http://www.image-net.org/
14https://matplotlib.org/api/colors_api.html
15https://matplotlib.org/
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Figure 4.3: Transformation from one sample to image for the convolutional neural network appli-
cation.

in the same way (freezing the top 249 layers). The final layer was also adapted to have a binary

output. This way the model is retrained but maintaining the weights associated with the internal

convolutional layers, trained with the ImageNet database.

4.1.6.6 Easy Ensemble

The Easy Ensemble implementation from the imbalanced-learn library16 didn’t allow its combi-

nation with the defined process pipeline. Therefore, a method, based on [LWZ06] was developed.

After choosing the number of sub-sets to use, denoted as n, the method executes the following

steps (after applying the methods of feature selection and balancing):

• For n:

– A base classifier, that can be chosen through a parameter, is created. A decision tree

for example.

– An instance of Random Under-sampling to under-sample the training set, is created.

– Both are inserted in a pipeline.

• The pipelines are used for the construction of a VotingClassifier17. This method implies a

voting scheme for its estimators, allowing the group to decide the classification.

• The VottingClassifier gets trained with the training set.

– Each sub-classifier gets fitted on a random under-sampled sub-set from the main train-

ing set.

• The final classification comes from the majority voting rule, that determines that the final

classification is chosen because it was the most voted by the sub-classifiers.

16http://contrib.scikit-learn.org/imbalanced-learn/generated/imblearn.ensemble.
EasyEnsemble.html

17http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
VotingClassifier.html
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Chapter 5

Test Results

In this chapter will be presented the most relevant test results for each one of the algorithms

applied. The results will be presented through tables that show performance metrics scores.

The performance of the developed models was measured by measuring the capacity of predic-

tion of the model through the validation set, the set that was unseen by the model in the training

process, representing new real world information. Each table, for each one of the algorithms,

includes five rows. Each row represents the best result of a set of tests, as described in 4.1, being:

• Row 1: The performance of the model with no feature selection or balancing method ap-

plied.

• Row 2: The combination that showed best performance from the experiments that combined

the classification algorithm with all balancing methods with no feature selection.

• Row 3: The combination that showed best performance from the experiments that combined

the classification algorithm with the feature selection methods with no balancing method

applied.

• Row 4: The combination that showed best performance from the experiments that com-

bined the classification algorithm with the best performing balancing method (previously

determined) and all feature selection models, checking if the feature selection enhances the

combination performance.

• Row 5: The combination that showed best performance from the experiments that com-

bined the classification algorithm with the best performing balancing method (previously

determined) and all manually selected set of features as described in 4.1.

5.1 Best combinations of methods

The tables that show the best combinations for each one of the classification algorithms, based on

their ROC AUC scoring metric, are:
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Table 5.1: Best combinations for the Decision Tree classification algorithm

Row Methods Accuracy Precision Recall ROC AUC F1
1 Decision Tree 0,83 0,69 0,83 0,5 0,75

2
Decision Tree +

0,75 0,31 0,62 0,7 0,41
Condensed Nearest Neighbor

3
Decision Tree +

0,56 0,83 0,56 0,65 0,62
Variance Threshold

4
Decision Tree +

0,68 0,82 0,68 0,65 0,72Select Kbest (75 features) +

Condensed Nearest Neighbor

5
Decision Tree +

0,62 0,82 0,62 0,65 0,67Condensed Nearest Neighbor +

Manually selected set 9

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.2: Best combinations for the Random Forest classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Random Forest 0,75 0,73 0,75 0,44 0,74

2
Random Forest +

0,61 0,84 0,61 0,68 0,67
NearMiss

3
Random Forest +

0,86 0,82 0,86 0,56 0,83
Select Percentile (40%)

4
Random Forest +

0,66 0,82 0,66 0,64 0,71Select Kbest (50) +

NearMiss

5
Random Forest +

0,43 0,7 0,43 0,78 0,51NearMiss +

Manually selected set 23

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.3: Best combinations for the K-Nearest Neighbors classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 K-Nearest Neighbors 0,86 0,74 0,86 0,5 0,8

2
K-Nearest Neighbors +

0,58 0,82 0,58 0,63 0,64
Random Under-sampling

3
K-Nearest Neighbors +

0,75 0,79 0,75 0,57 0,77
RFECV (with Decision Tree)

4
K-Nearest Neighbors +

0,61 0,82 0,61 0,65 0,67Random Under-sampling +

Select Kbest (75 features)

5
K-Nearest Neighbors +

0,61 0,91 0,61 0,73 0,69Random Under-sampling +

Manually selected set 27

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.4: Best combinations for the Support Vector Machine classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Support Vector Machines 0,86 0,74 0,86 0,5 0,8

2
Support Vector Machines +

0,61 0,81 0,61 0,61 0,67
Instance Hardness Threshold

3
Support Vector Machines +

0,7 0,81 0,7 0,63 0,74
Select Kbest (50 features)

4
Support Vector Machines +

0,73 0,82 0,73 0,65 0,76Select Percentile (40%) +

Instance Hardness Threshold

5
Support Vector Machines +

0,44 0,89 0,44 0,64 0,53Instance Hardness Threshold +

Manually selected set 27

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.5: Best combinations for the Naive Bayes classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Naive Bayes 0,65 0,75 0,65 0,47 0,69

2
Naive Bayes +

0,46 0,81 0,46 0,59 0,53
Instance Hardness Threshold

3
Naive Bayes +

0,7 0,83 0,7 0,66 0,74
Select Kbest (75 features)

4
Naive Bayes +

0,56 0,85 0,56 0,68 0,62Select Percentile (80% features) +

Instance Hardness Threshold

5
Naive Bayes +

0,59 0,79 0,59 0,63 0,64Instance Hardness Threshold +

Manually selected set 22

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.6: Best combinations for the AdaBoost classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 AdaBoost (Decision Tree) 0,66 0,72 0,66 0,41 0,69

2
AdaBoost (Decision Tree) +

0,63 0,83 0,63 0,66 0,69
Instance Hardness Threshold

3
AdaBoost (Decision Tree) +

0,82 0,81 0,82 0,6 0,81
RFECV (Decision Tree)

4
AdaBoost (Decision Tree) +

0,6 0,84 0,6 0,67 0,66Variance Threshold +

Instance Hardness Threshold

5
AdaBoost (Decision Tree) +

0,53 0,88 0,53 0,64 0,62Instance Hardness Threshold +

Manually selected set 1

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.7: Best combinations for the Neural Networks classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Neural Network 0,87 0,76 0,87 0,5 0,81

2
Neural Network +

0,83 0,84 0,83 0,66 0,83
Random Over-sampler

3
Neural Network +

0,87 0,76 0,87 0,5 0,81
All feature selection methods

4
Neural Network +

0,74 0,85 0,74 0,71 0,78Select Kbest (25 features) +

Random Over-sampler

5
Neural Network +

0,41 0,86 0,41 0,63 0,47Random Over-sampler +

Manually selected set 19

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.8: Best combinations for the RankSVM classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 RankSVM 0,71 0,75 0,71 0,48 0,73

2
RankSVM +

0,59 0,8 0,59 0,6 0,65
Instance Hardness Threshold

3
RankSVM +

0,74 0,74 0,74 0,64 0,74
Select Fpr

4
RankSVM +

0,65 0,8 0,65 0,6 0,7Select Fdr +

Instance Hardness Threshold

5
RankSVM +

0,65 0,89 0,65 0,71 0,72Instance Hardness Threshold +

Manually selected set 26

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.9: Best combinations for the RankBoost classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 RankBoost 0,84 0,78 0,84 0,52 0,8

2
RankBoost +

0,76 0,8 0,76 0,61 0,78
Repeated Edited Nearest Neighbors

3
RankBoost +

0,86 0,83 0,86 0,6 0,84
Select Kbest (75 features)

4
RankBoost +

0,76 0,8 0,76 0,6 0,78PCA +

Repeated Edited Nearest Neighbors

5
RankBoost +

0,69 0,77 0,69 0,63 0,72Repeated Edited Nearest Neighbors +

Manually selected set 14

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.10: Best combinations for the RankNet (with 10 internal nodes) classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 RankNet 0,47 0,71 0,47 0,4 0,55

2
RankNet +

0,34 0,84 0,34 0,59 0,38
Edited Nearest Neighbors

3
RankNet +

0,55 0,83 0,55 0,64 0,61
RFE (Decision Tree)

4
RankNet +

0,42 0,86 0,42 0,63 0,47RFECV (Decision Tree)

Edited Nearest Neighbors

5
RankNet +

0,51 0,88 0,51 0,63 0,6Edited Nearest Neighbors +

Manually selected set 27

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.11: Best combinations for the RankNet (with 50 internal nodes) classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 RankNet 0,23 0,79 0,23 0,52 0,21

2
RankNet +

0,65 0,77 0,65 0,54 0,69
Instance Hardness Threshold

3
RankNet +

0,57 0,8 0,57 0,64 0,59
Select Kbest (75 features)

4
RankNet +

0,45 0,83 0,45 0,62 0,51Select Fwe +

Instance Hardness Threshold

5
RankNet +

0,47 0,83 0,47 0,63 0,53Instance Hardness Threshold +

Manually selected set 12

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.
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Table 5.12: Best combinations for the Cost Sensitive Random Forests (with cost matrix number
one) classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Cost Sensitive RF 0.86 0.74 0.86 0.5 0.8

2
Cost Sensitive RF +

Random Under-Sampler
0.55 0.83 0.55 0.64 0.66

3
Cost Sensitive RF +

Select Percentile (40%)
0.87 0.89 0.87 0.54 0.88

4
Cost Sensitive RF +

Select Kbest (75 features) +

Random Under-Sampler

0.63 0.86 0.62 0.72 0.72

5
Cost Sensitive RF +

Random Under-Sampler +

Manually selected set 17

0.68 0.85 0.68 0.69 0.75

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.13: Best combinations for the Easy Ensemble classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Easy Ensemble 0,65 0,8 0,65 0,6 0,7

3
Easy Ensemble +

0,69 0,84 0,69 0,69 0,73
Select Kbest (100 features)

5
Easy Ensemble +

0,7 0,84 0,7 0,71 0,74
Manually selected set 5

1: Best performance, no balancing nor feature selection methods.

3: Best performance, no balancing, only feature selection methods.

5: Best performance, no balancing, only manually selected sets.
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Table 5.14: Best combinations for the Cost Sensitive Random Forests (with cost matrix number
two) classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
1 Cost Sensitive RF 0.86 0.74 0.86 0.5 0.8

2
Cost Sensitive RF +

Random Under-Sampler
0.54 0.83 0.54 0.63 0.65

3
Cost Sensitive RF +

Feature Aglomeration
0.82 0.76 0.82 0.51 0.79

4
Cost Sensitive RF +

Random Under-Sampler +

RFECV(Decision Tree)

0.66 0.85 0.66 0.7 0.74

5
Cost Sensitive RF +

Random Under-Sampler +

Manually Selected set 23

0.56 0.83 0.56 0.65 0.74

1: Best performance, no balancing nor feature selection methods.

2: Best performance, only balancing methods.

3: Best performance, only feature selection methods.

4: Best performance, balancing method (from row 1) and feature selection methods.

5: Best performance, balancing method (from row 1) and manually selected sets.

Table 5.15: Best combination for the Convolutional Neural Networks classification algorithm.

Row Methods Accuracy Precision Recall ROC AUC F1
All Convolutional Neural Networks 0,87 0,76 0,87 0,5 0,81

5.2 Global comparison of the best results

As seen in table 5.1, from all the combinations of methods tested from the Decision Tree experi-

ments, as explained in 4.1, the combination of Decision Tree and the Condensed Nearest Neighbor

algorithm was the one that achieved a higher scoring in AUC.

For all combinations of methods tested from the Random Forest experiments, the combination

that showed best performance score in AUC was the combination of Random Forest with the Near

Miss algorithm and the manually selected set 23 (all features but the STS test features), as can be

seen in table 5.2.

Considering the combinations made for the experiments with K-Nearest Neighbor, the combi-

nation that showed best AUC scoring was the combination between K-Nearest Neighbor with the

Random under-sampling algorithm and the manually selected set 27 (traditional test scores and

personal information), as shown in table 5.3
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For the Support Vector Machines experiments, the combination that achieved the best AUC

score was the combination between a Support Vector Machine with the Select percentile (set to

choose 40% of features) algorithm and the Instance Hardness Threshold for balancing, as can be

seen in table 5.4

The combination that showed best AUC scoring from the Naive Bayes experiments was the

combination of Naive Bayes with the Select Percentile (set to choose 80% of features) and the

Instance Hardness Threshold, as can be seen in table 5.5.

The AdaBoost set of experiments led to the conclusion that the combination of AdaBoost

(Decision Tree) with the Variance Threshold and the Instance Hardness Threshold algorithm was

the best AUC scoring, as can be seen in table 5.6

For the Neural Networks set of experiments, the combination that led to the best AUC scoring

model was the combination of a Neural Network with the Select Kbest (set to choose 25 features)

and the Random Over-sampling algorithm, as can be seen in table 5.7

The set of experiments of the RankSVM type showed that the combination that led to best

AUC scoring results was the combination between the RankSVM algorithm with the Instance

Hardness Threshold algorithm and the manually selected set 26 (traditional test scores), as can be

seen in table 5.8.

For the RankBoost set of experiments, the combination that led to the best AUC scoring was

the combination of the RankBoost algorithm with the Repeated Edited Nearest Neighbor algorithm

and the manually selected set 14 (combination of the personal information of the participant with

its performance on the 4 stage balance test), as can be seen in table 5.9.

The set of experiments for the RankNet (with 10 internal nodes) type showed that the combi-

nations of methods that led to the best AUC scoring was the combination between the RankNet

algorithm with the RFE (Decision Tree) algorithm, as can be seen in table 5.10.

The combination of methods that showed the best AUC scoring for the set of experiments of

the RankNet (with 50 internal nodes) type was the combination of the RankNet algorithm with the

Select Kbest (set to choose 75 features) algorithm, as can be seen in table 5.11.

The combination of methods that showed the best AUC scoring for the set of experiments of

the Cost-Sensitive Random Forest (with cost-matrix one) type was the combination of the Cost-

Sensitive Random Forest (with cost-matrix one) with the Select Kbest (set to choose 75 features)

feature selection method and the Random Under-Sampler for balancing method, as can be seen in

table 5.12.

The combination of methods that showed the best AUC scoring for the set of experiments of

the Cost-Sensitive Random Forest (with cost-matrix two) type was the combination of the Cost-

Sensitive Random Forest (with cost-matrix two) with the manually selected set 23 with the Ran-

dom Under-Sampler balancing method, as can be seen in table 5.14.

For the Easy Ensemble implementation and set of experiments, the combination that led to

the best AUC scoring was the combination of the Easy Ensemble algorithm with the manually

selected set 5 (features of the Step Test), as can be seen in table 5.13.
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Table 5.16: Comparison between the best results by algorithm type.

Algorithm with balancing
and feature selection methods

Accuracy Precision Recall AUC F1

Decision Tree +

Condensed Nearest Neighbor
0.75 0.31 0.62 0.7 0.41

Random Forest +

Near Miss +

Manually selected set 23

0.43 0.7 0.43 0.78 0.51

K-Nearest Neighbors +

Random Under-Sampling +

Manually selected set 27

0.61 0.91 0.61 0.73 0.69

Support Vector Machine +

Select Percentile (40%) +

Instance Hardness Threshold

0.73 0.82 0.73 0.65 0.76

Naive Bayes +

Select Percentile (80% features) +

Instance Hardness Threshold

0.56 0.85 0.56 0.68 0.62

AdaBoost (Decision Tree) +

Variance Threshold +

Instance Hardness Threshold

0.6 0.84 0.6 0.67 0.66

Neural Network +

Select Kbest (25 features) +

Random Over-Sampler

0.74 0.85 0.74 0.71 0.78

Cost Sensitive RF (matrix one) +

Select Kbest (75 features) +

Random Under-Sampler

0.63 0.86 0.62 0.72 0.72

Cost Sensitive RF (matrix two) +

Random Under-Sampler +

RFECV(Decision Tree)

0.66 0.85 0.66 0.7 0.74

RankSVM +

Instance Hardness Threshold +

Manually selected set 26

0.65 0.89 0.65 0.71 0.72

RankBoost +

Repeated Edited Nearest Neighbors +

Manually selected set 14

0.69 0.77 0.69 0.63 0.72

RankNet (10 internal nodes) +

RFE (Decision Tree)
0.55 0.83 0.55 0.64 0.61

RankNet (50 internal nodes) +

Select Kbest (75 features)
0.57 0.8 0.57 0.64 0.59

Easy Ensemble +

Manually selected set 5
0.7 0.84 0.7 0.71 0.74
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Table 5.16 shows the comparison between the best results obtained by algorithm type. The

algorithm that showed best AUC score (combined with feature selection and balancing methods)

was the Random Forest algorithm, with a score of 0.78. The K-Nearest Neighbor (combined with

feature selection and balancing methods) was the second highest scorer. The RankBoost algorithm

(combined with balancing and feature selection methods) showed the lowest AUC score, of 0.63.

5.2.1 Comparison of balancing methods

In the tables A.1 and A.2 presented in appendix A.1, the performance of the several balancing

methods for the different types of experiments made (by type of classification algorithm) are pre-

sented according to their AUC score obtained with the validation set. There are two tables just to

improve reading quality.

The balancing method that showed best AUC score was the Condensed Nearest Neighbor,

with an AUC of 0.7, in the Decision Trees experiments. The one that showed worst performance

was the SMOTEENN method with an AUC score of 0.55.

5.2.2 Comparison of feature selection methods

In the tables A.3 and A.4 presented in appendix A.1, the performance of the several feature selec-

tion methods for the different types of experiments made (by type of classification algorithm) are

presented according to their AUC score obtained with the validation set. There are two tables just

to improve reading quality.

The method that showed the best AUC score was the Select Kbest (mutual info, of 75 features),

with an AUC score of 0.72. The Select Kbest (mutual info, of 100 features) method was the second

highest with an AUC score of 0.69. The lowest score was showed by the RFECV (Decision Tree)

and the PCA methods, with a score of 0.6.

5.2.3 Comparison of manually selected features

In the tables 5.17 and 5.18, the performance of the several manual feature selection methods,

for the different types of experiments made (by type of classification algorithm), are presented

according to their AUC score obtained with the validation set. There are two tables just to improve

reading quality.
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Table 5.17: Comparison of manual feature selection methods, part one.

AUC comparison DT RF KNN SVM NB AdaBoost NN Easy Ensemble
Set 1 0.53 0.61 0.61 0.5 0.59 0.64 0.5 0.6

Set 2 0.58 0.59 0.55 0.5 0.55 0.58 0.5 0.48

Set 3 0.49 0.58 0.49 0.5 0.44 0.62 0.54 0.59

Set 4 0.42 0.58 0.56 0.6 0.58 0.45 0.53 0.44

Set 5 0.58 0.48 0.56 0.5 0.51 0.56 0.54 0.71
Set 6 0.5 0.57 0.45 0.5 0.53 0.53 0.5 0.37

Set 7 0.57 0.57 0.46 0.54 0.56 0.53 0.5 0.45

Set 8 0.51 0.5 0.52 0.5 0.47 0.54 0.54 0.53

Set 9 0.65 0.53 0.63 0.54 0.57 0.6 0.53 0.64

Set 10 0.59 0.5 0.71 0.49 0.5 0.61 0.5 0.68

Set 11 0.44 0.58 0.64 0.54 0.57 0.59 0.56 0.6

Set 12 0.48 0.59 0.58 0.5 0.45 0.56 0.61 0.51

Set 13 0.39 0.59 0.39 0.5 0.61 0.59 0.5 0.4

Set 14 0.51 0.57 0.53 0.42 0.58 0.53 0.5 0.55

Set 15 0.51 0.45 0.51 0.5 0.53 0.44 0.6 0.55

Set 16 0.64 0.61 0.5 0.5 0.55 0.51 0.5 0.6

Set 17 0.52 0.5 0.55 0.47 0.52 0.54 0.47 0.53

Set 18 0.5 0.58 0.47 0.44 0.52 0.4 0.62 0.57

Set 19 0.6 0.49 0.56 0.57 0.6 0.56 0.63 0.68

Set 20 0.53 0.54 0.59 0.55 0.6 0.51 0.5 0.55

Set 21 0.46 0.48 0.56 0.61 0.51 0.53 0.5 0.5

Set 22 0.5 0.57 0.44 0.52 0.63 0.41 0.5 0.38

Set 23 0.5 0.78 0.44 0.4 0.51 0.6 0.5 0.61

Set 24 0.38 0.36 0.51 0.53 0.55 0.56 0.53 0.51

Set 25 0.6 0.59 0.49 0.47 0.56 0.52 0.5 0.54

Set 26 0.46 0.58 0.39 0.62 0.44 0.55 0.5 0.58

Set 27 0.61 0.69 0.73 0.64 0.61 0.51 0.5 0.65
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Table 5.18: Comparison of manual feature selection methods, part two.

AUC
comparison

CNN
CSRF

(matrix one)
CSRF

(matrix two)
Rank
SVM

Rank
Boost

Rank
Net(10)

Rank
Net(50)

Best
AUC

Set 1 0.5 0.61 0.54 0.52 0.59 0.51 0.47 0.64

Set 2 0.5 0.49 0.64 0.5 0.6 0.58 0.53 0.64

Set 3 0.5 0.6 0.62 0.42 0.47 0.45 0.49 0.62

Set 4 0.5 0.57 0.55 0.61 0.46 0.55 0.45 0.61

Set 5 0.5 0.48 0.57 0.52 0.45 0.54 0.47 0.71

Set 6 0.5 0.46 0.38 0.53 0.43 0.51 0.45 0.57

Set 7 0.5 0.47 0.46 0.59 0.46 0.53 0.47 0.59

Set 8 0.5 0.6 0.54 0.53 0.46 0.48 0.52 0.6

Set 9 0.5 0.51 0.62 0.61 0.53 0.6 0.57 0.65

Set 10 0.5 0.65 0.57 0.56 0.39 0.56 0.47 0.71

Set 11 0.5 0.42 0.45 0.59 0.49 0.58 0.52 0.64

Set 12 0.5 0.5 0.58 0.59 0.55 0.56 0.63 0.63

Set 13 0.5 0.46 0.47 0.58 0.54 0.53 0.47 0.61

Set 14 0.5 0.46 0.38 0.53 0.63 0.51 0.46 0.63

Set 15 0.5 0.48 0.61 0.48 0.41 0.5 0.48 0.61

Set 16 0.5 0.56 0.51 0.53 0.6 0.61 0.5 0.64

Set 17 0.5 0.69 0.58 0.55 0.49 0.49 0.44 0.69

Set 18 0.5 0.62 0.58 0.54 0.46 0.45 0.44 0.62

Set 19 0.5 0.55 0.6 0.6 0.56 0.42 0.48 0.68

Set 20 0.5 0.62 0.52 0.54 0.42 0.53 0.54 0.62

Set 21 0.5 0.55 0.59 0.55 0.45 0.37 0.51 0.61

Set 22 0.5 0.46 0.56 0.66 0.53 0.46 0.5 0.66

Set 23 0.5 0.61 0.65 0.52 0.62 0.57 0.49 0.78

Set 24 0.5 0.48 0.55 0.61 0.53 0.47 0.5 0.61

Set 25 0.5 0.61 0.58 0.54 0.57 0.53 0.47 0.61

Set 26 0.5 0.59 0.51 0.71 0.58 0.56 0.58 0.71

Set 27 0.5 0.64 0.6 0.53 0.52 0.63 0.52 0.73

From the tables 5.17 and 5.18, it is perceivable that the set that showed best AUC result was

the set 23 (all features but the STS test) on the Random Forests experiments. The set that showed

worst performance was the set 6 (features from the Grip Strength test alone), showing a best score

of 0.57. Focusing on the sets that were built to understand which differences would make if one

the several tests were excluded (set 17, 18, 19, 20, 21, 22, 23, 24 as described in table 4.1), it is

possible to perceive that the set that got an higher AUC score was the set 23 (as mentioned before),

and the one that showed worst AUC score was the set 24 (features from all tests but the personal
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information) and the set 21 (features from all tests but the 10MW test), both showing an AUC

score of 0.61. The set 27 (traditional test scores and personal information) showed the second

highest AUC score.
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Chapter 6

Discussion, conclusions and future work

In this section will be reviewed the main objectives of this dissertation, their state of accomplish-

ment and will be made some suggestions on possible future work that can be done.

6.1 Discussion

From the several results presented, it is possible to understand the existence of several models

that reveal high accuracy but low AUC. This is due to the fact that the validation set was not

balanced, thus including more samples from the class of participants that didn’t fall in the six-

months follow-up period compared to the number of samples from the class of participants that

have fallen during the follow-up period. This is also one of the reasons why AUC was chosen

to compare performances since it is a better evaluator of the real predicting capacity of a binary

model.

The differences in the cost matrices used with the Cost Sensitive Random Forests appear to

not cause great differences in the learning mechanism for this scenario, since they showed similar

highest scoring values.

The set of experiments from the Convolutional Neural Networks type showed that the models

were unable to learn, therefore all combinations presented the same performance result, as showed

in table 5.15. The model was trained by transfer learning, a technique that allows a pre-trained

model to re-set some of its weights, adapting to new classes, while maintaining other weights

on its structure, to ease training times and computational resources. The replacing classes that

were introduced to the model were classes that were defined by groups of images, as explained

in 4.1.6.5. This images are different from the ones which were used to pre-train the model, the

images from the ImageNet database. With this database the model was trained to classify images

that represented physical objects or beings, which is not the case here. This may justify the lack

of adaptability to the new presented classes. The results on Convolutional Neural Networks were

omitted from the table that compared the all best combinations, table 5.16.
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6.1.1 Which is the best performing classification model?

The results presented in table 5.16, and in the graph A.1, show the performance of the combina-

tions from the several sets of experiments (by classification algorithm type) that achieved highest

scores in AUC. The combination that showed the best performance from all combinations tested

was the combination of Random Forest with the Near Miss algorithm and the manually selected

set 23 (all but the STS features), with an AUC score of 0.78. This may indicate that this algorithm

deserves further focus and study for usability in this scenario and that not utilizing the features

from the STS test may not prejudice the predicting capacity of the models.

Neural Networks appear as having high recall and F1 scores while maintaining good accuracy,

precision and AUC scores, appearing to be one of the better balanced combinations, so as the Easy

Ensemble combination. The score for the Easy Ensemble experiment was obtained using only

features from the Step Test which may reflect its importance.

6.1.2 Should any physical test be removed?

The best result in AUC may indicate that not using the STS test may not prejudice the predicting

capacity of the models as referenced before. Also mentioned before was the possible importance

of the Step Test in the predicting capacities of the models. Further studies should be conducted in

order to reach clearer conclusions.

The low result showed by the Grip Strength manually selected set of features, set 6, may reflect

that it does not influence the learning process, although it is a test that results in only one feature,

which may not be enough for the learning process to occur when applied by itself.

K-Nearest Neighbors showed the second highest general AUC score, 0.73, in the manually

selected set 27 (the traditional test scores and personal information). This may reflect the benefit

that occur through the combination of the several scores (as in the set 27) instead of using just an

isolated traditional score for the classification.

The removal of highly correlated features, as performed in this work, did not prejudiced the

learning process which achieve relatively good results. The highly correlated features show the

following quantities (when considering the whole dataset) by test: 50 are from the 4 Stage Balance

test (42% of the features from this test), nine are from the Step Test (45% of the features from this

test), nine are from the 30 Seconds Sit-to-Stand test (41% of features from this test), 36 are from

the Timed Up and Go test (46% of features from this test), 14 are from the 10 Meter Walk test

(61% of features from this test) and 16 are from the X-Reach test (24% of features from this test).

Further studies on the contribution of each one of them and their possible elimination should be

made.

Considering the comparison of the application of the feature selection methods solely, as pre-

sented in tables A.3 and A.4, the Select Kbest (mutual info, on 75 features) produced the highest

AUC score when applied by itself, of 0.72, although, the feature selection method that led to the

highest general AUC score was the manually selected set 23, as mentioned before.
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The set of features that showed statistical differences at the beginning of the work appeared as

producing an in-between normal average performance in AUC.

6.1.3 Which was the best balancing method?

Considering the comparison of balancing methods solely, with no feature selection, as presented

in tables A.1 and A.1, it is perceivable that the balancing method Instance Hardness Threshold

appears as being the method that produced the best AUC scoring more times than all the remaining

methods. Considering 14 sets of experiments it appears to be the best balancing method when

applied by itself in five of the sets (36%). The balancing method that led to the highest AUC score,

when applied by itself, was the Condensed Nearest Neighbor, with an AUC score of 0.7, higher

than the one presented by the Instance Hardness Threshold. The Near Miss algorithm showed the

second highest AUC score and was the method included in the Random Forest combination that

led to the general highest AUC score of 0.78.

6.1.4 Is the use of sensors and Machine Learning profitable for classification?

The best result obtained in AUC, 0.78, was obtained with the manually selected set 23, that incor-

porated features from all tests but the STS test. This included the features extracted from sensors

and personal information. The second highest result was obtained with the manually selected set

27, that incorporated features that represented only traditional test scores and personal informa-

tion. This may indicate that the use of instrumented tests, in combination with Machine Learning

models may be best at discriminating groups in high risk for falls from groups in low risk for falls.

This result also suggests that combining several traditional scores, instead of using just one can be

beneficial.

Considering the state of the art in the use of Machine Learning approaches to predict the risk

of falling, as presented in table 2.3, the population from each one of the conducted studies is

different. The most similar study was the one conducted with a sample size of 292 participants,

evaluating the TUG test with two inertial sensors. This study achieved a predictive accuracy of

76% with its best method, based on prior history of falls. Another study, with a sample of 120

participants, that also used a pressure platform and an inertial sensor, achieved a mean accuracy

score of 71.52%, on the application of SVM, based on prior history of falls. The accuracy score of

the best model in AUC scoring, in this work, focusing on the set of experiments that used SVM,

was of 73%. Another study based on a smaller sample size of 37 participants, and based in prior

history of falls, showed the best performance on accuracy, with scores of 90%.

Although the tests evaluated, the type of study (prospective in our case) and the sensors used

were different, the results obtained in the current study are comparable to the ones presented on

the literature since the maximal score obtained, in AUC, was of 78%. Searching for the best

models according to accuracy can be misleading, not representative of the true predictability of

the model. Some of the models obtained showed higher accuracy than the ones in the literature,
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but, as mentioned before, this scores do not represent the real predictive capacity of the models

developed, being the AUC score more appropriate in this scenario.

6.2 Conclusion

Falls are affecting the life of a large number of persons, mainly the elderly population. They carry

lots of consequences, from physical and psychological to monetary.

Achieving good prevention of falls instead of post-intervention has been a goal in research and

a great effort has been made to develop a tool that is capable of making the distinction between

future fallers and non-fallers.

Presented to a binary-classification problem, a set of possible classification algorithms was

chosen that spanned from the various fields of Machine Learning. A methodology that consisted

on several tests that evaluated the performance of the combination of the algorithms with fea-

ture selection and balancing methods was developed and the tests conducted, to search the widest

range of possibilities for later implementation in the screening tool. The dataset was studied and

analyzed statistically in order to be properly pre-processed. The biggest problem faced in this

dissertation was the class imbalance problem, that reflected the difference in number of obser-

vations between the problem classes, which implied a broader research on methods to surpass it

and successive application. Tests that allowed the comparison of the different physical tests in the

collection of participant information were also developed.

The developed work achieved the primary objectives planned. Random Forest was the best

performing algorithm obtaining an AUC score of 0.78 (combined with the Near Miss balancing

algorithm and the manually selected set of features 23, that included all features from the tests but

the STS test).

The traditional scores appear to have good predicting capacity, as mentioned on the litera-

ture, while the highly correlated features may not be useful for the learning process and could be

eliminated as done in this work.

The Step Test appears to have importance in the learning process and the Grip Strength test

appears as not when evaluated alone, although further studies should be developed in order to

reach more informed conclusions. The Select Kbest method for feature selection was one of the

best performing methods from all.

The results indicate that the use of instrumented tests combined with Machine Learning may

show better predicting capacity than the traditional test scores of each test individually, although

when combining traditional scores using appropriate machine learning techniques, they also show

relatively high predicting capacities. The results obtained in the current study are comparable to

the ones reported in the literature, having a best AUC score of 0.78, based on a prospective study,

whilst the highest scoring known study from the literature showed an accuracy of 90% on a sample

size of 37 participants, based on prior history of falls.
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6.3 Future work

The work done can be improved in many aspects.

The objective of making as much tests as possible led to the superficial study of the application

of some classification algorithms. For example, the application of transfer learning with Convo-

lutional Neural Networks showed to be ineffective in this scenario. The development of a proper

convolutional architecture, specific for this scenario, can be studied.

The good balance obtained with the application of Neural Networks could be further explored;

access to more information and a tuned architecture could lead to better results.

Results of classification based on prior history of falls could be deeper compared to these

obtained with a prospective history of falls, an important question to the literature.

Other cost matrices could be studied and applied in cost sensitive tests and more cost sensitive

algorithms can be explored. Finally, the study could be also remade using the F1 scoring metric

for building the models, which is also a good evaluating metric for a binary classification problem.

One of the limitations of this study was that the follow-up period was of only six-months,

further studies could be made with results from a follow-up period of twelve-months as most

prospective studies do.
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Appendix A

Parameters for methods used in
RandomizedSearchCV

In this chapter will be presented the parameters used on the RandomizedSearchCV application for

the algorithms that followed the proposed set of steps, considered as being non-deviating.

To start it is important to describe the logspace function from the numpy library1 that creates

an array with a specified number of floats from a possible range. The smallest number of the range

is defined by the value of base 10 to the power of start and the end value defined by the value of

base 10 to the power of stop. As an example:

1 np.logspace(start=float(-2), stop=float(1), num=25)

May originate:

1 [ 0.01 0.01333521 0.01778279 0.02371374 0.03162278

2 0.04216965 0.05623413 0.07498942 0.1 0.13335214

3 0.17782794 0.23713737 0.31622777 0.4216965 0.56234133

4 0.74989421 1. 1.33352143 1.77827941 2.37137371

5 3.16227766 4.21696503 5.62341325 7.49894209 10. ]

This method was used to define possible ranges of parameters for the algorithm.

The scales were not chosen randomly: each individual parameter was tested individually with

large scales and the sub-scales that benefited the performance of the model were chosen.

A.0.1 Decision Trees

In the training of Decision Trees2 the parameters to include in the possible combinations were:

1https://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.logspace.html
2http://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html
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1

2 log = np.logspace(start=float(-8), stop=float(-6), num=25)

3

4 params_grid = dict(dt__splitter=[’best’, ’random’],

5 dt__criterion=[’gini’, ’entropy’],

6 dt__max_features=[None, ’auto’, ’sqrt’, ’log2’],

7 dt__max_depth=[None],

8 dt__min_samples_split=[2, 5, 10],

9 dt__min_samples_leaf=[1, 5, 10],

10 dt__max_leaf_nodes=[None],

11 dt__min_impurity_split=log,

12 dt__presort=[True, False],

13 dt__random_state=[None],

14 dt__class_weight=[’balanced’, None])

All possible combinations were searched.

A.0.2 Random Forests

As for the Random Forests3 algorithm, the parameters to include in the possible combinations

were:

1

2 log = np.logspace(start=float(-8), stop=float(-6), num=25)

3

4 params_grid = dict(rf__n_estimators=[5, 10, 50, 150],

5 rf__criterion=[’gini’, ’entropy’],

6 rf__max_features=[None, ’auto’, ’sqrt’, ’log2’],

7 rf__max_depth=[None],

8 rf__min_samples_split=[2, 5, 10],

9 rf__min_samples_leaf=[1, 5],

10 rf__max_leaf_nodes=[None],

11 rf__min_impurity_split=log,

12 rf__bootstrap=[True],

13 rf__oob_score=[False],

14 rf__random_state=[None],

15 rf__warm_start=[False],

16 rf__class_weight=[’balanced’, ’balanced_subsample’, None],

17 rf__n_jobs=[-1])

For this algorithm 2000 combinations were searched.

3http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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A.0.3 K-Nearest Neighbors

For the K-Nearest Neighbors4 algorithm, the parameters to include in the possible combinations

were:

1 params_grid = dict(knn__n_neighbors=[1, 5, 10],

2 knn__weights=[’uniform’, ’distance’],

3 knn__algorithm=[’auto’, ’kd_tree’, ’brute’],

4 knn__leaf_size=[2, 5, 10],

5 knn__metric=[’manhattan’, ’chebyshev’],

6 knn__p=[1, 2, 3],

7 knn__metric_params=[None],

8 knn__n_jobs=[-1])

For this algorithm 300 combinations were searched.

A.0.4 Support Vector Machines

For the SVM5 algorithm, the parameters to include in the possible combinations were:

1 c = np.logspace(start=float(1), stop=float(2), num=25)

2 coef = np.logspace(start=float(-2), stop=float(1), num=25)

3 tol = np.logspace(start=float(-4), stop=float(-1), num=25)

4 log = np.logspace(start=float(-4), stop=float(-1), num=25)

5 gamma = list()

6 for el in log:

7 gamma.insert(len(gamma), el)

8 gamma.insert(len(gamma), ’auto’)

9

10 params_grid = dict(svm_svc__C=c,

11 svm_svc__kernel=[’linear’, ’poly’, ’rbf’, ’sigmoid’],

12 svm_svc__degree=[1, 2, 3],

13 svm_svc__gamma=gamma,

14 svm_svc__coef0=coef,

15 svm_svc__tol=tol,

16 svm_svc__class_weight=[’balanced’, None],

17 svm_svc__probability=[True, False],

18 svm_svc__shrinking=[True, False],

19 svm_svc__max_iter=[-1],

20 svm_svc__decision_function_shape=[’ovo’, ’ovr’, None],

21 svm_svc__random_state=[None])

For this algorithm 1000 combinations were searched.

4http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

5http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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A.0.5 Naive Bayes

For the Naive Bayes6 algorithm, the parameters to include in the possible combinations were:

1 priors = [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6], [0.5, 0.5], [0.6, 0.4],

[0.7, 0.3], [0.8, 0.2], [0.9, 0.1]]

2

3 params_grid = dict(nb__priors=priors)

For this algorithm all combinations were searched.

A.0.6 AdaBoost

For the AdaBoost7 algorithm, the parameters to include in the possible combinations were:

1 priors = [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6], [0.5, 0.5], [0.6, 0.4],

[0.7, 0.3], [0.8, 0.2], [0.9, 0.1]]

2 log = np.logspace(start=float(1), stop=float(2), num=25)

3 params_grid = dict(adaboost__base_estimator=[DecisionTreeClassifier()],

4 adaboost__n_estimators=[50,100,150],

5 adaboost__learning_rate=log,

6 adaboost__algorithm=[’SAMME’, ’SAMME.R’],

7 adaboost__random_state=[None])

For this algorithm all combinations were searched.

A.0.7 RankSVM

The RankSVM algorithm was applied with the default parameters that assume the model as being

a LinearSVC as in the documentation8:

1 model = LinearSVC(fit_intercept=False, penalty=’l1’, tol=1e-3,

dual=False)

For this algorithm all combinations were searched.

6http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
GaussianNB.html

7http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
AdaBoostClassifier.html

8http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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A.1 Test results

Table A.1: Comparison of balancing methods, part one.

AUC comparison DT RR KNN SVM NB AdaBoost NN
Cluster

Centroids
0.53 0.53 0.48 0.53 0.53 0.58 0.5

Condensed
Nearest Neighbor

0.7 0.5 0.59 0.48 0.46 0.64 0.5

Edited
Nearest Neighbor

0.53 0.61 0.51 0.58 0.49 0.5 0.5

Repeated
Edited Nearest

Neighbors
0.54 0.48 0.56 0.49 0.56 0.47 0.5

AllKNN
0.48 0.53 0.49 0.53 0.57 0.49 0.5

Instance
Hardness
Threshold

0.49 0.61 0.57 0.61 0.59 0.66 0.5

Near
Miss

0.45 0.68 0.55 0.47 0.43 0.56 0.62

Neighbourhood
Cleaning Rule

0.51 0.51 0.47 0.47 0.52 0.57 0.5

One
Sided Selection

0.47 0.52 0.53 0.5 0.54 0.57 0.5

Random
Under Sampler

0.39 0.5 0.63 0.56 0.48 0.6 0.5

Tomek
Links

0.48 0.5 0.5 0.56 0.53 0.46 0.5

ADASYN
0.39 0.6 0.49 0.48 0.48 0.5 0.5

Random
Over Sampler

0.58 0.46 0.54 0.5 0.43 0.48 0.66

SMOTE
0.56 0.48 0.57 0.5 0.53 0.48 0.5

SMOTEENN
0.48 0.47 0.49 0.55 0.5 0.54 0.5

SMOTE
Tomek

0.5 0.55 0.5 0.59 0.48 0.48 0.5
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Table A.2: Comparison of balancing methods, part two.

AUC comparison CNN
CSRF

(matrix one)
CSRF

(matrix two)
Rank
SVM

Rank
Boost

Rank
Net(10)

Rank
Net(50)

Best
AUC

Cluster
Centroids

0.5 0.55 0.61 0.59 0.51 0.46 0.53 0.61

Condensed
Nearest Neighbor

0.5 0.62 0.62 0.42 0.54 0.57 0.52 0.7

Edited
Nearest Neighbor

0.5 0.51 0.5 0.44 0.51 0.59 0.47 0.61

Repeated
Edited Nearest Neighbors

0.5 0.55 0.56 0.48 0.61 0.52 0.54 0.61

AllKNN
0.5 0.5 0.5 0.52 0.47 0.43 0.53 0.57

Instance
Hardness Threshold

0.5 0.46 0.49 0.6 0.54 0.5 0.54 0.66

Near
Miss

0.5 0.56 0.58 0.49 0.56 0.45 0.53 0.68

Neighborhood
Cleaning Rule

0.5 0.48 0.48 0.46 0.46 0.44 0.5 0.57

One
Sided Selection

0.5 0.49 0.49 0.48 0.49 0.49 0.5 0.57

Random
Under Sampler

0.5 0.64 0.63 0.52 0.51 0.49 0.47 0.64

Tomek
Links

0.5 0.49 0.62 0.52 0.46 0.53 0.52 0.62

ADASYN
0.5 0.5 0.49 0.48 0.48 0.53 0.45 0.6

Random
Over Sampler

0.5 0.53 0.59 0.48 0.49 0.43 0.51 0.66

SMOTE
0.5 0.51 0.53 0.5 0.48 0.45 0.5 0.57

SMOTEENN
0.5 0.55 0.5 0.49 0.48 0.53 0.47 0.55

SMOTE
Tomek

0.5 0.48 0.5 0.46 0.41 0.56 0.53 0.59

97



Parameters for methods used in RandomizedSearchCV

Table A.3: Comparison of feature selection methods, part one.

AUC comparison DT RF KNN SVM NB AdaBoost NN Easy Ensemble
Select Percentile

(f_classif) 20
0.56 0.54 0.54 0.5 0.62 0.54 0.5 0.56

Select Percentile
(f_classif) 40

0.5 0.54 0.5 0.62 0.65 0.51 0.5 0.53

Select Percentile
(f_classif) 60

0.5 0.5 0.52 0.55 0.56 0.48 0.5 0.58

Select Percentile
(f_classif) 80

0.46 0.5 0.5 0.5 0.64 0.5 0.5 0.63

Select Kbest
(f_classif) 25

0.42 0.51 0.5 0.5 0.61 0.44 0.5 0.61

Select Kbest
(f_classif) 50

0.45 0.5 0.54 0.63 0.65 0.54 0.5 0.62

Select Kbest
(f_classif) 75

0.53 0.5 0.5 0.59 0.66 0.51 0.5 0.63

Select Kbest
(f_classif) 100

0.58 0.53 0.53 0.5 0.62 0.49 0.5 0.6

Select Fpr
(f_classif)

0.42 0.5 0.49 0.5 0.6 0.59 0.5 0.62

Select Fdr
(f_classif)

0.59 0.49 0.5 0.57 0.65 0.58 0.5 0.66

Select Fwe
(f_classif)

0.62 0.49 0.5 0.5 0.6 0.56 0.5 0.55

RFE
(Decision Tree)

0.5 0.51 0.49 0.5 0.46 0.49 0.5 0.65

RFECV
(Decision Tree)

0.5 0.51 0.57 0.5 0.57 0.6 0.5 0.53

Variance
Threshold

0.65 0.53 0.48 0.5 0.55 0.55 0.5 0.58

Select Percentile
(mutual_info) 20

0.47 0.55 0.5 0.5 0.57 0.42 0.5 0.66

Select Percentile
(mutual_info) 40

0.51 0.56 0.54 0.5 0.55 0.48 0.5 0.68

Select Percentile
(mutual_info) 60

0.42 0.48 0.5 0.5 0.61 0.48 0.5 0.59

Select Percentile
(mutual_info) 80

0.5 0.53 0.54 0.5 0.47 0.5 0.5 0.55

Select Kbest
(mutual_info) 25

0.47 0.56 0.53 0.5 0.58 0.5 0.5 0.62

Select Kbest
(mutual_info) 50

0.48 0.48 0.53 0.57 0.6 0.58 0.5 0.6

Select Kbest
(mutual_info) 75

0.49 0.51 0.53 0.5 0.49 0.47 0.5 0.54

Select Kbest
(mutual_info) 100

0.44 0.51 0.5 0.5 0.66 0.46 0.5 0.69

PCA 0.5 0.53 0.49 0.57 0.53 0.48 0.5 0.51

Feature
Agglomeration

0.54 0.5 0.48 0.43 0.64 0.52 0.5 0.52
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Table A.4: Comparison of feature selection methods, part two.

AUC
comparison

CNN
CSRF

(matrix one)
CSRF

(matrix two)
Rank
SVM

Rank
Boost

Rank
Net(10)

Rank
Net(50)

Best
AUC

Select Percentile
(f_classif) 20

0.5 0.53 0.49 0.57 0.48 0.51 0.47 0.62

Select Percentile
(f_classif) 40

0.5 0.59 0.5 0.58 0.47 0.53 0.44 0.65

Select Percentile
(f_classif) 60

0.5 0.66 0.49 0.51 0.48 0.47 0.45 0.66

Select Percentile
(f_classif) 80

0.5 0.61 0.5 0.54 0.48 0.62 0.51 0.64

Select Kbest
(f_classif) 25

0.5 0.62 0.5 0.48 0.51 0.55 0.53 0.62

Select Kbest
(f_classif) 50

0.5 0.63 0.49 0.51 0.48 0.51 0.48 0.65

Select Kbest
(f_classif) 75

0.5 0.67 0.5 0.62 0.44 0.53 0.64 0.67

Select Kbest
(f_classif) 100

0.5 0.65 0.49 0.52 0.45 0.48 0.56 0.65

Select Fpr
(f_classif)

0.5 0.6 0.5 0.64 0.51 0.49 0.51 0.65

Select Fdr
(f_classif)

0.5 0.61 0.5 0.57 0.48 0.49 0.51 0.66

Select Fwe
(f_classif)

0.5 0.67 0.48 0.57 0.51 0.55 0.53 0.67

RFE
(Decision Tree)

0.5 0.57 0.5 0.57 0.53 0.64 0.5 0.65

RFECV
(Decision Tree)

0.5 0.49 0.49 0.58 0.45 0.52 0.53 0.6

Variance
Threshold

0.5 0.6 0.5 0.57 0.5 0.45 0.53 0.65

Select Percentile
(mutual_info) 20

0.5 0.62 0.49 0.59 0.51 0.62 0.54 0.66

Select Percentile
(mutual_info) 40

0.5 0.62 0.5 0.55 0.47 0.52 0.54 0.68

Select Percentile
(mutual_info) 60

0.5 0.63 0.5 0.54 0.52 0.58 0.56 0.63

Select Percentile
(mutual_info) 80

0.5 0.64 0.5 0.51 0.48 0.54 0.54 0.64

Select Kbest
(mutual_info) 25

0.5 0.66 0.49 0.61 0.49 0.47 0.42 0.66

Select Kbest
(mutual_info) 50

0.5 0.65 0.49 0.49 0.55 0.51 0.43 0.65

Select Kbest
(mutual_info) 75

0.5 0.72 0.5 0.48 0.6 0.51 0.48 0.72

Select Kbest
(mutual_info) 100

0.5 0.63 0.49 0.52 0.53 0.4 0.47 0.69

PCA 0.5 0.6 0.49 0.54 0.47 0.52 0.55 0.6

Feature
Agglomeration

0.5 0.51 0.51 0.5 0.52 0.53 0.41 0.64
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Parameters for methods used in RandomizedSearchCV

A.2 Performance comparison

Figure A.1: Comparison of the best performing combinations by set of experiments.
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